Similar to other predict methods, this function produces fitted values and
class labels from a fitted sparsegl
object.
Arguments
- object
Fitted
sparsegl()
model object.- newx
Matrix of new values for
x
at which predictions are to be made. Must be a matrix. This argument is mandatory.- s
Value(s) of the penalty parameter
lambda
at which predictions are required. Default is the entire sequence used to create the model.- type
Type of prediction required. Type
"link"
gives the linear predictors for"binomial"
; for"gaussian"
models it gives the fitted values. Type"response"
gives predictions on the scale of the response (for example, fitted probabilities for"binomial"
); for"gaussian"
type"response"
is equivalent to type"link"
. Type"coefficients"
computes the coefficients at the requested values fors
. Type"class"
applies only to"binomial"
models, and produces the class label corresponding to the maximum probability. Type"nonzero"
returns a list of the indices of the nonzero coefficients for each value ofs
.- ...
Not used.
Details
s
is the new vector of lambda
values at which predictions are requested.
If s
is not in the lambda sequence used for fitting the model, the coef
function will use linear interpolation to make predictions. The new values
are interpolated using a fraction of coefficients from both left and right
lambda
indices.
Examples
n <- 100
p <- 20
X <- matrix(rnorm(n * p), nrow = n)
eps <- rnorm(n)
beta_star <- c(rep(5, 5), c(5, -5, 2, 0, 0), rep(-5, 5), rep(0, (p - 15)))
y <- X %*% beta_star + eps
groups <- rep(1:(p / 5), each = 5)
fit1 <- sparsegl(X, y, group = groups)
predict(fit1, newx = X[10, ], s = fit1$lambda[3:5])
#> s1 s2 s3
#> [1,] -0.5347443 0.5858798 1.588274