This function etracts coefficients from a
cross-validated sparsegl()
model, using the stored "sparsegl.fit"
object, and the optimal value chosen for lambda
.
Arguments
- object
Fitted
cv.sparsegl()
object.- s
Value(s) of the penalty parameter
lambda
at which coefficients are desired. Default is the single values = "lambda.1se"
stored in the CV object (corresponding to the largest value oflambda
such that CV error estimate is within 1 standard error of the minimum). Alternativelys = "lambda.min"
can be used (corresponding to the minimum of cross validation error estimate). Ifs
is numeric, it is taken as the value(s) oflambda
to be used.- ...
Not used.
Examples
n <- 100
p <- 20
X <- matrix(rnorm(n * p), nrow = n)
eps <- rnorm(n)
beta_star <- c(rep(5, 5), c(5, -5, 2, 0, 0), rep(-5, 5), rep(0, (p - 15)))
y <- X %*% beta_star + eps
groups <- rep(1:(p / 5), each = 5)
fit1 <- sparsegl(X, y, group = groups)
cv_fit <- cv.sparsegl(X, y, groups)
coef(cv_fit, s = c(0.02, 0.03))
#> 21 x 2 sparse Matrix of class "dgCMatrix"
#> s1 s2
#> (Intercept) 0.25058054 0.32798112
#> V1 4.69685440 4.61179702
#> V2 4.87498687 4.80778825
#> V3 4.79092864 4.70788964
#> V4 4.66068791 4.53530689
#> V5 4.63701728 4.47046037
#> V6 4.83517828 4.67359737
#> V7 -4.32100726 -4.09271636
#> V8 1.78185776 1.67848050
#> V9 0.04970934 0.08302102
#> V10 0.03184873 0.07964946
#> V11 -4.77143301 -4.67240455
#> V12 -4.92212465 -4.82991217
#> V13 -4.76996682 -4.59229699
#> V14 -4.95490098 -4.88966650
#> V15 -4.88915656 -4.79944906
#> V16 . .
#> V17 . .
#> V18 . .
#> V19 . .
#> V20 . .