Predicting phenotypes from microarrays using amplified, initially marginal, eigenvector regression (AIMER)

Daniel J. McDonald Indiana University, Bloomington mypage.iu.edu/~dajmcdon

30 July 2017

The paper:

R package:

My www:

Sparse linear model $Y = \mathbf{X}\beta + \epsilon$

We want to:

- Predict survival (or other phenotype) from genetic information.
- Find predictive genes.

Difficulties:

- Lots of genes (p large) but few patients (n small)
- Computationally slow
- Estimates are poor without structural assumptions

METHODS

Supervised techniques

- Lasso (- doesn't respect groups of genes, + sparse solutions)
- Ridge (+ maintains correlated groups, not sparse)
- OLS (Not unique, not sparse)
- Group lasso (- requires knowledge of groups)
- Unsupervised (- all ignore the supervisor)
 - PCA (+ finds linear groups)
 - Spectral clustering (+ finds nonlinear groups)
 - Hierarchical clustering
- Semisupervised
 - PCR (+ finds groups, nonsparse, inconsistent estimator)
 - Supervised PCA (+ finds groups, + sparse, strong assumptions)¹
 - Gene shaving, tree harvesting, others
 - AIMER—finds groups, sparse, weaker assumptions

THE IDEA

- Treat this like a matrix approximation problem: $\frac{1}{n} \mathbf{X}^{\top} \mathbf{X}$ is $p \times p$. PCA is bad (computationally, statistically)
- (Unsupervised) Matrix approximation literature suggests performing computations on a subset of the columns (see references later).
- (Supervised) We use those that have high marginal correlation with $Y: \mathbf{X}_A$.
- Comparison for reconstruction:

$$\begin{pmatrix} \mathbf{A}IMER & \mathbf{P}CR & \mathbf{S}PCA \\ \begin{pmatrix} \mathbf{X}_{A}^{T}\mathbf{X}_{A} & \mathbf{X}_{A}^{T}\mathbf{X}_{A^{C}} \\ \mathbf{X}_{A^{C}}^{T}\mathbf{X}_{A} & \mathbf{X}_{A^{C}}^{T}\mathbf{X}_{A^{C}} \end{pmatrix} & \begin{pmatrix} \mathbf{X}_{A}^{T}\mathbf{X}_{A} & \mathbf{X}_{A}^{T}\mathbf{X}_{A^{C}} \\ \mathbf{X}_{A^{C}}^{T}\mathbf{X}_{A} & \mathbf{X}_{A^{C}}^{T}\mathbf{X}_{A^{C}} \end{pmatrix} & \begin{pmatrix} \mathbf{X}_{A}^{T}\mathbf{X}_{A} & \mathbf{X}_{A}^{T}\mathbf{X}_{A^{C}} \\ \mathbf{X}_{A^{C}}^{T}\mathbf{X}_{A} & \mathbf{X}_{A^{C}}^{T}\mathbf{X}_{A^{C}} \end{pmatrix}$$

- Now just use standard approximation techniques:
 - Compute the SVD
 - Perform some computations to get coefficient estimates
 - "extend" these to the rest
 - Threshold for selection

AIMER

Algorithm: Amplified, Initially Marginal, Eigenvector Regression (AIMER)

- 1: Input: centered design matrix X, centered response Y, thresholds $t_*, b_* > 0$, integer d.
- 2: Compute marginal correlation t_i between X_i and Y for all j.

3: Set:
$$A = \{j : |t_j| > t_*\}, \widetilde{\mathbf{X}} = [\mathbf{X}_A, \mathbf{X}_{A^c}], \mathbf{F} = \widetilde{\mathbf{X}}^\top \mathbf{X}_A.$$

4: SVD: $\mathbf{F} = \mathbf{U}(\mathbf{F})\mathbf{\Lambda}(\mathbf{F})\mathbf{V}(\mathbf{F})^{\top}$.

5: Set:
$$\widehat{\mathbf{V}}_{[d]} = \mathbf{U}_{[d]}(\mathbf{F}), \widehat{\mathbf{\Lambda}}_{[d]} = \mathbf{\Lambda}_{[d]}(\mathbf{F})^{1/2}, \widehat{\mathbf{U}}_{[d]} = \mathbf{X}_{new} \widehat{\mathbf{V}}_{[d]} \widehat{\mathbf{\Lambda}}_{[d]}^{-1}$$
.

- 6: Estimate: $\widehat{\boldsymbol{\beta}} = \widehat{\mathbf{V}}_{[d]} \widehat{\boldsymbol{\Lambda}}_{[d]}^{-1} \widehat{\mathbf{U}}_{[d]}^T Y.$ 7: Threshold: $\widehat{\boldsymbol{\beta}}(b_*) := \widehat{\boldsymbol{\beta}} \mathbf{1}_{(b_*,\infty)}(|\widehat{\boldsymbol{\beta}}|).$
- 8: **Return:** Coefficient estimates $\widehat{\beta}(b_*)$.

Favorable: $\mathbf{X} = \mathbf{U}\mathbf{\Lambda}\mathbf{V} + \mathbf{N}_{n \times p}(0, 1), \quad Y = \mathbf{U}\Theta + \mathbf{N}_n(0, 1)$ $\operatorname{Cov}(X_1, y) \neq 0, \operatorname{Cov}(X_2, y) \neq 0$

Unfavorable: $\mathbf{X} = \mathbf{U}\mathbf{\Lambda}\mathbf{V} + \mathbf{N}_{n \times p}(0, 1), \quad Y = \mathbf{U}\Theta + \mathbf{N}_n(0, 1),$ $\operatorname{Cov}(X_1, y) \neq 0, \operatorname{Cov}(X_2, y) \neq 0$

Unfavorable: $\mathbf{X} = \mathbf{U}\mathbf{\Lambda}\mathbf{V} + \mathbf{N}_{n \times p}(0, 1), \quad Y = \mathbf{U}\Theta + \mathbf{N}_n(0, 1),$ $\operatorname{Cov}(X_1, y) \neq 0, \operatorname{Cov}(X_2, y) \approx 0$

REAL DATA

Average MSE on random train/test splits for 4 standard genetics problems. Bolded values indicate the best predictive performance for each type of method for each dataset.

Methods	DLBCL	Breast cancer	Lung cancer	AML
lasso	0.6805	0.6285	0.8159	1.9564
ridge	0.6485	0.6407	0.7713	1.9234
SPC	0.6828	0.6066	0.8344	2.4214
AIMER	0.6518	0.6004	1.0203	1.8746

Examining DLBCL in detail:

- AIMER selects 26 predictive genes
- 16 genes have been related to lymphoma in the biology literature
- 19 genes have been identified via statistical techniques developed for the DLBCL data
- 4 genes (symbols ALDH2, CELF2, COL16A1, and DHRS9) are newly discovered to the best of our knowledge

CONCLUSIONS

• When to use AIMER?

- Solve high-dimensional linear regression problem
- Linear regression model: $Y = \mathbf{X}\beta + \epsilon$
- Continuous response
- The number of features is far larger than the number of samples

• Why AIMER?

- Low computational cost
- Often, more accurate prediction
- Selects a small number of predictive features

REFERENCES

Bair, E., Hastie, T., Paul, D. and Tibshirani, R. (2006) Prediction by supervised principal components. Journal of the American Statistical Association, **101**, 119–137.

Ding, L. and McDonald, D.J. (2017) Predicting phenotypes from microarrays using amplified, initially marginal, eigenvector regression. Bioinformatics, **33**, i350–i358.

Johnstone, I.M. and Lu, A.Y. (2009) Sparse principal components analysis.

Ma, P., Mahoney, M.W. and Yu, B. (2015) A statistical perspective on algorithmic leveraging. <u>The Journal of</u> Machine Learning Research, **16**, 861–911.

Paul, D., Bair, E., Hastie, T. and Tibshirani, R. (2008) "Preconditioning" for feature selection and regression in high-dimensional problems. The Annals of Statistics, **36**, 1595–1618.

Raskutti, G. and Mahoney, M. (2015) Statistical and algorithmic perspectives on randomized sketching for ordinary least-squares. Proceedings of the 32nd international conference on machine learning (icml) (eds F. Bach), & D. Blei), pp. 617–625. PMLR, Lille, France.