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Obligatory “data are big” slide

Modern statistical applications — genomics, neural image analysis, text analysis, weather
prediction — have large numbers of covariates p

Also frequently have lots of observations n

Need algorithms which can handle these kinds of data sets — with good statistical properties
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Lesson of the talk

Computational choices impact statistical performance

These choices can take many forms:

• choosing tuning parameters
• di�erent optimization algorthms return di�erent solutions
• how long do we run our MCMC (and which kind do we use)

Statistical theory often neglects these choices:

• LASSO works with oracle tuning parameter
• We have the posterior if our MCMC runs forever
• EM gives us a global solution
• Algorithmic guarantees hold uniformly over ALL datasets
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Today’s emphasis

Many statistical methods or optimization algorithms use a singular value decomposition (SVD):

X = UDV> : U>U = I, V>V = I, D diagonal.

• Penalized Least Squares:

min
β

1
2n
‖Y − Xβ ‖22 + λPen(β )

• PCA:

max
V>V=Id

tr
(
V>X>XV

)
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SVD == Slow

The SVD is computationally expensive.

For a generic n × p matrix, the SVD requires O (min {np2, n2p}) and storage of the entire matrix
in fast memory.

I want to understand the statistical properties of some approximations that speed up
computation and save storage.

1. Better algorithmic choices allow us to solve a statistical problem.
2. Algorithmic advances suggest new statistical techniques.
3. Statistical models suggest better algorithms.
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Outline

1. Introduction
2. Climate science and choosing better algorithms
3. Approximations for many observations and robust statistics
4. Many measurements and better approximate algorithms
5. Ongoing/related/future work
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Estimating the trend in cloud-top
temperature volatility



Climate change

The scienti�c consensus is that

1. World-wide climate is changing.
2. This change is mostly driven by human behavior.

Global warming −→ climate change: the distribution of temperature (and precipitation) is
changing

Increasing mean temperature understates the costs:

1. More frequent extremes have severe e�ects
2. Local discrepancies lead to more storms
3. Temporal dependencies mean persistence
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Using weather satellites

Drivers of climate variation:
1. Ocean currents
2. Jet stream
3. Annular modes + El Niño/La Niña
4. Cloudiness

CLARREO satellite: monitor cloud top temperature as it relates to climate.

• Has yet to launch, no sooner than 2022
• Defunded in most recent federal budget

Source: NCAR CCSM3 Diagnostic Plots.
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CLARREO vs MetOp/Modis

required for decadal climate change observations. 
Fifth, CLARREO has demonstrated that scene and 
viewing geometry-dependent polarization distribu-
tion models (PDMs) (Nadal and Breon 1999; Maignan 
et al. 2009) allow CLARREO to determine the scan-
angle-dependent polarization sensitivity of imagers 
such as VIIRS, AVHRR, or geostationary imagers, 
as well as to enable those instruments to remove this 
scene-dependent polarization dependence (Lukashin 
et al. 2012). Sixth, the CLARREO 90° inclined polar 
orbit (see Table 1) slowly drifts through all 24 hours 
of local solar time over 6 months. This orbit allows 
reference intercalibration orbit crossings with satel-
lites at all latitudes, which is important for verifying 
accuracy across all climate regimes, as well as for 
verifying if instruments have orbit-dependent calibra-
tion changes, especially from the different hot/cold 
parts of the orbit in or out of direct solar illumination. 
By contrast, sun-synchronous satellites only cross 
orbits at polar latitudes, which is another limita-
tion of current GSICS methods. Simulations show 

that CLARREO reference 
intercalibration sampling 
is sufficient to determine 
i nst r u ment  ga i ns  a nd 
offsets on a monthly time 
scale, while polarization 
sensitivity, nonlinearity, 
and orbit position depen-
dence can be achieved on 
annual time scales.

In Fig. 6, CLARREO 
crosses under the Suomi 
National Polar-Orbiting 
Partnership (NPP) or Joint 
Polar Satellite System-1 
(JPSS-1) orbit. CLARREO 
matches elevat ion and 
azimuth directions across 
the cross-track scans of 
CERES, VIIRS, and CrIS by 
setting the azimuth angle 
of the CLARREO instru-
ment to match the NPP 
scan plane and then slowly 
rotates the CLARREO RS 
spectrometer (mounted on 
a gimbal) to match view-
ing zenith angles across 
the entire scan during the 
orbit crossing. The azimuth 
angle for this match varies 
from orbit crossing to orbit 

crossing but is essentially constant for any single orbit 
crossing (Roithmayr and Speth 2012).

The time available for the matching scan is 
directly proportional to the orbit altitude separa-
tion of the two spacecraft. Spacecraft at the same 
altitude have only a few seconds to obtain the entire 
scan swath, while several minutes are available for 
an orbit separation of 100 km or more (Roithmayr 
and Speth 2012). For this reason, the CLARREO 
design orbit altitude is ~600 km—sufficiently high 
to minimize fuel use for orbit control, sufficiently 
low to minimize launch vehicle requirement for 
mass to orbit, and well below the typical polar 
orbiter altitudes of ~825 km [NPP, JPSS, and the 
Meteorological Operational Satellite (METOP)] to 
increase the matched scan angle intercalibration 
time. Thus, the orbit selection and gimbal azimuth/
elevation-pointing capability will allow CLARREO 
to increase reference intercalibration sampling 
by more than a factor of 100 compared to current 
GSICS capabilities, whereas typical SNOs restrict 

FIG. 6. As the CLARREO orbit (red; 609-km altitude, 90° inclination) crosses 
that of a satellite such as NPP or MetOp (green) (827-km altitude, 1330 LT sun-
synchronous orbit with 98.7° orbit inclination) with an operational sensor, the 
CLARREO infrared and reflected solar spectrometers gather data matched 
in time, space, and angle of view to provide reference intercalibration SI-
traceable spectra for operational sensors that cannot achieve climate change 
accuracy directly. As a metrology transfer standard in orbit, CLARREO is an 
anchor for the climate observing system.
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uncertainty dominates the accuracy of global average 
trends. Uncertainty in climate sensitivity is driven 
primarily by uncertainty in cloud feedback, which in 
turn is driven primarily by low cloud changes varying 
Earth’s albedo (Solomon et al. 2007; Bony et al. 2006; 
Soden et al. 2008). We can derive a simple metric of 
cloud feedback for reflected solar by considering the 
trend in global mean shortwave cloud radiative forc-
ing (SW CRF) (Soden et al. 2008; Loeb et al. 2007). 
Global mean SW CRF is simply the difference be-
tween all-sky and clear-sky reflected flux.

As for temperature trends (Fig. 3a), the perfect 
observing system again shows the need for long cli-
mate records for accurate trends in SW CRF (Fig. 3b). 

What about time to detect trends? Using Leroy et al. 
(2008b) we can defi ne an analogous uncertainty factor 
Ut—the ratio of the time to detect a trend using a real 
observing system to the time to detect a trend using a per-
fect observing system. Such a ratio can be defi ned for any 
climate variable or statistical confi dence bound desired. 
Again extending the results from Leroy et al. (2008b),

  
(2)

The only difference between Eqs. (1) and (2) is that the 
square root on the right side of the equation becomes a 
cube root. Since Ua and Ut are always greater than 1, and 
are usually near 1, Eqs. (1) and (2) show that

  (3)

Another way of interpreting Eq. (3) is that the degradation 
of trend accuracy for time to detect trends is only two-
thirds of the degradation for accuracy in trends. For exam-
ple, the CLARREO requirement that Ua < 1.2 equivalently 
requires that Ut < 1.13. How do we interpret the meaning 
of Ut = 1.13? If a perfect observing system could detect a 
temperature trend with 95% confi dence in 20 years, then 
the CLARREO observing system could detect the same 
trend with 95% confi dence in 23 years (13% more time).

These equations give a simple but powerful way to 
understand the value of observing system accuracy for both 
climate trend accuracy (e.g., tests of climate predictions) and 
time to detect trends (e.g., public policy decisions). They also 
provide a way to compare consistent metrics across a wide 
range of climate variables, as well as a wide range of sources 
of uncertainty in climate observations. We strongly encour-
age use of this approach to more rigorously understand and 
optimize climate observation requirements across the wide 
range of essential climate variables (ECVs) (GCOS 2011). 
This is especially important given the limited resources avail-
able for global climate observations (Trenberth et al. 2013).

FIG. 3. The relationship between absolute calibration 
accuracy and the accuracy of global average decadal cli-
mate change trends. Trend accuracy shown for a perfect 
observing system (black), varying levels of instrument ab-
solute accuracy (solid color lines) for possible CLARREO 
requirements, and current instruments in orbit (dashed 
lines). Shown are (a) the relationship between infrared 
spectra accuracy and temperature trends and (b) the 
relationship between reflected solar spectra and changes 
in broadband CRF and cloud feedback. The figures show 
the dramatic effect of instrument accuracy on both cli-
mate trend accuracy (vertical axis) as well as the time to 
detect trends (horizontal axis). The green vertical line for 
reflected solar shows the range of CMIP3 climate model 
simulations (Soden and Vecchi 2011). Larger values of 
decadal change in SW CRF indicate larger values of cloud 
feedback (Soden et al. 2008).
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• Weather satellites aren’t made for this.
• More information in higher moments than in average?

Source: Wielicki, et al. (2013).
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Satellite data

Once collaborators do lots of processing. . .

• 52,000 time series
• daily records over ∼ 40 years
• “trends” are local, nonlinear, not sinusoidal
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Trends in variance

Let yts be the observed temperature at time t and location s.

yts ∼ N(0, exp(hts))

Estimate h, but it should be “smooth” relative to space and time.

Use a matrix D+ penalty to encode this smoothness.
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Optimization problem

min
h

∑
hst + y2ste

−hst + λ‖Dh‖1

Standard optimizer: Primal Dual Interior Point method.
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Generic PDIP

1. Start with a guess h(1)

2. Solve a linear system [Au = v]
3. Calculate a step size
4. Iterate 2 & 3 until convergence

The matrix A changes each iteration, dense, and roughly 109 × 109.

This isn’t going to work.
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Detailed PDIP

Primal Dual

min
h

f (h) + λ‖Dh‖1 min
v

f∗(−D>v)

s.t. ‖v‖∞ ≤ λ

• f (h) :=
∑
hst + y2ste

−hst

• f∗(u) :=
∑
(ust − 1) log

y2st
1−ust + ust − 1

KKT conditions (w > 0) =⇒

rw(v, µ1, µ2) :=

+f∗(−D>v) + D(v − λ1)>µ1 − D(v + λ1)>µ2

−µ1(v − λ1) + µ2(v + λ1) − w−11

 =

0

0


• As w→∞, this converges to the optimum.

• But this is a nonlinear system, can’t solve.

• Use Newton steps, which give the [Au = v] thing

• A is the Jacobian of rw . 14



Hints and caveats

• New algorithms: Khodadadi and M. (2019)
• Don’t have to invert that matrix
• Must repeat for many tuning parameters
• Current work studies statistical properties:
• → Algorithm is “exact”, no statistical loss
• This is the best case
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Solving big regression problems
approximately



Core techniques

Suppose we have a matrix X ∈ Òn×p and vector Y ∈ Òn

Model:
Y = Xβ∗ + ε

Least squares β̂ = argminβ
1
2n ‖Xβ − Y‖

2
2

Ridge regression β̂2(λ) = argminβ
1
2n ‖Xβ − Y‖

2
2 +

λ
2 ‖β ‖

2
2

LASSO β̂1(λ) = argminβ
1
2n ‖Xβ − Y‖

2
2 + λ‖β ‖1

Dantzig selector

Group LASSO

. . .
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Typical results for approximation

The general philosophy: Find an approximation β̃ that is as close as possible to the solution of
the original problem UNIFORMLY.

OLS:

‖Xβ̃ − Y‖22 ≤ (1 + ε)‖Xβ̂ − Y‖
2
2

Ridge:

‖Xβ̃ − Y‖22 +
λ

2
‖β̃ ‖22 ≤ (1 + ε)

(
‖Xβ̂2(λ) − Y‖22 +

λ

2
‖β̂2(λ)‖

2
2

)
etc.
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Statistical analysis

For an approximation θ̃ of θ̂,

Å‖θ − θ̃‖22 = Var(θ̃) + Bias(θ̃)2

Å‖θ − θ̃‖22 = Å‖θ̃ − θ̂ + θ̂ − θ‖
2
2

= ÅApprox error2 + MSE(θ̂) + 2Å
[
(Approx error)

(
θ̂ − θ

)]
≤ sup

(
Approx error2

)
+ MSE(θ̂)

+ 2 sup (Approx error) × RMSE(θ̂)

≤ C
(
sup

(
Approx error2

)
+ MSE(θ̂)

)
• Previous work examines Approx error, assumes MSE(θ̂) small

• We examine the MSE of the procedure
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Bias-variance tradeo�

MSE
Var

Bias2

model complexity →

• We examine Å‖θ − θ̃‖22 where the expectation is over everything.
• Only other similar is Ma, Mahoney, and Yu (JMLR, 2015).
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Core techniques for least squares

If X �ts into RAM, there exist excellent algorithms in LAPACK that are

• Double precision
• Very stable
• O(np2) when n � p.
• O(n2p) when n � p.
• require extensive random access to matrix

There is a lot of interest in �nding and analyzing techniques that extend these approaches to
large(r) problems
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Out-of-core techniques for least squares

Many techniques focus on randomized compression

This is sometimes known as sketching or preconditioning

• Rokhlin, Tygert, (2008) “A fast randomized algorithm for overdetermined linear least-squares
regression.”

• Drineas, Mahoney, et al., (2011) “Faster least squares approximation.”

• Woodru�, (2014) “Sketching as a Tool for Numerical Linear Algebra.”

• Wang, Lee, Mahdavi, Kolar, Srebro, (2017) "Sketching meets random projection in the dual."

• Ma, Mahoney, and Yu, (2015), "A statistical perspective on algorithmic leveraging."

• Pilanci and Wainwright, (2015-2016). Multiple papers.

• Others.
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Compression

Basic Idea (n � p):

• Choose some matrix Q ∈ Òq×n .
• Under many conditions, su�cient to choose q = Ω(p).
• Use QX (and) QY instead in the optimization.
• O(np2) −→ O(p3).

Basic Idea (n � p):

• Choose some matrix Q ∈ Òp×q .
• Under many conditions, su�cient to choose q = Ω(n).
• Use XQ instead in the optimization.
• O(n2p) −→ O(n3).

Finding QX for arbitrary Q and X takes O(qnp) computations.
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Solving large least-squares problems

Large n smaller p:

1. Introduce 2 new versions of compression.
2. General theoretical techniques.
3. Show how to choose tuning parameters (without extra computation).
4. Compression a bit worse under “nice” model. But better with outliers.

Large p smaller n:

1. Procedure for low-rank (sparse) regression.
2. Statistical performance is near-optimal under the right model.
3. Algorithm is approximate, but doesn’t lose anything.
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Lots of observations



Family of 4 (current SOTA)

1. Full compression:

β̃FC = argmin
β
‖Q(Xβ − Y)‖22

= argmin
β
‖QXβ ‖22 − 2Y

>Q>QXβ

= (X>Q>QX)−1X>Q>QY

2. Partial compression:

β̃PC = argmin
β
‖QXβ ‖22 − 2Y

>Xβ

= (X>Q>QX)−1X>Y

Also called "Hessian Sketching".
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Family of 4 (our versions)

Write:

B = [ β̃FC β̃PC ]

W = XB

3. Linear combination compression:

α̂lin = argmin
α
‖Wα − Y‖22

β̃lin = Bα̂lin

4. Convex combination compression:

α̂con = argmin
0≤α∑
α=1

‖Wα − Y‖22

β̃con = Bα̂con
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Why these?

Turns out that FC is unbiased =⇒ worse than OLS (has high variance)

PC is biased and empirics demonstrate low variance

Combination should (and does) give better statistical properties

We do everything with an `2 penalty
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Timing vs. accuracy

increase in MSE computation time
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Relative prediction error
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Which one wins?
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Tuning parameters selection

• We use GCV with the degrees of freedom:

GCV(λ) =
1
n ‖Xβ̃ (λ) − Y‖

2
2

(1 − df/n)2

• df is easy for full or partial compression (though ignored in literature)

• For the other cases, an ad hoc approximation works, but has no justi�cation.

• We derive an estimate via Stein’s method.

• Easy to calculate both for a range of λ without extra computations.
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Stein’s method details

• The degrees of freedom for a generic predictor f is

df(f ) :=
1
σ2

n∑
i=1

Cov(Yi, fi(Y)).

• For normal linear model (OLS), we have

df =
1
σ2
Å

[ (̂
Y − Å

[̂
Y
] )>
(Y − µY)

]
=

1
σ2
Å

[
Y>HY

]
= p.

• In general, Stein’s Lemma gives us the following: if Yi − Å [Yi |Xi] ∼ N(0,σ2)

Cov(Yi, fi(Y)) = Å [(Yi − Å [Yi |Xi]) fi(Y)] = Å [+fi(Y)] .

See e.g. Efron
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Applying it

Because linear and convex combination compression have closed form expressions:

e.g. Linear combination:

f (Y) =
[
XB

] [
(B>X>XB)−1B>X>Y

]
where

B =
[
(X>Q>QX + λI)−1X>

] 
Q>QY

Y

 .
Apply every calculus rule you can �nd to yield a nasty expression which won’t �t on this slide.

This is an unbiased estimate of df.
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Risk estimation accuracy
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Predicting read counts
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Standard ridge results

Theorem

bias2
(
β̂2(λ) | X

)
= λ2β>∗ V(D

2 + λIp)−2V>β∗.

tr
(
Var

[
β̂2(λ) | X

] )
= σ2

p∑
i=1

d2i
(d2i + λ)

2 .
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MSE of Full Compression

Theorem

bias2
[
β̃FC | X

]
= λ2β>∗ V(D

2 + λIp)−2V>β∗ + op(1)

tr
(
Var

[
β̃FC | X

] )
= σ2

p∑
i=1

d2i
(d2i + λ)

2 + op(1)

+
(s − 3)+

q
tr

(
diag(vec (In))M>M ⊗ (I − H)Mβ∗β>∗ M

>(I − H)
)

+
β>∗ M

>(I − H)2Mβ∗
q

tr(MM>)

+
1
q
tr

(
(I − H)Mβ∗β>∗ M

>(I − H)M>M
)
.

Note: M = (X>X + λIp)−1X> and H = XM
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Special case

Corollary

If 1
nX
>X = Ip,

MSE
(
β̂2

)
= b2

(
θ

1 + θ

)2
+

pσ2

n(1 + θ)2

MSE
(
β̃FC

)
= b2

(
θ

1 + θ

)2
+

pσ2

n(1 + θ)2
+
b2pθ2(s − 2)+
q(1 + θ)4

+
p2θ2b2

q(1 + θ)4

MSE
(
β̃PC

)
= b2

(
θ

1 + θ

)2
+

pσ2

n(1 + θ)2
+
p(s − 2)+b2

q(1 + θ)2
+

pb2

q(1 + θ)4

where b2 := ‖β∗‖22 , and θ := λ/n
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What’s the trick?

• All the estimators depend (at least) on

(X>Q>QX + λIp)−1

• We derived properties of Q>Q

Å

[
s
q
Q>Q

]
= In

Var
[
vec

(
s
q
Q>Q

)]
=
(s − 3)+

q
diag(vec (In)) +

1
q
In2 +

1
q
Knn

• So the technique is to do a Taylor expansion around s
qQ
>Q = In.
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The takeaway message

Compression works in a fraction of the time.

Combining standard (FC and PC) is better.

Their genesis is an examination of the statistical performance.

Are there models under which compressed estimators are better?

Answer: YES! If there are outliers that are also high leverage.
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Proof of concept
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β̂n+1 − β̂n =

(
yn+1 − x>n+1β̂n

1 + x>n+1(X>X)−1xn+1

)
(X>X)−1xn+1
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Lots of measurements



Algorithmic methods (SOTA)

“Random projection”

OLS:

γ̂ = argmin
γ

1
2n
‖XQγ − Y‖22

β̂RP ← Qγ̂

Before, sketched the covariance X>X→ X>Q>QX.

RP sketches the Gram matrix XX> → XQ>QX>.

So existing analyses are equivalent: as long as the sketching grabs most of the action.
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Grabbing the action

Before, we needed to get the high-leverage rows.

Now, we need “the high-leverage columns”.

Means most of the predictive information comes from a few variables.

Essentially, a low-rank predictor, driven by a few variables.

This is just sparse PCA regression.

We do that instead.
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High-dimensional PCR

Two stages:
1. V̂ = argmax

V>V=Id
tr

(
V>X>XV

)
2. γ̂pcr = argmin

γ∈Òd

1
2n
‖Y − XV̂γ‖22

β̂pcr ← V̂γ̂pcr

Here, V̂ is analogous to Q but it uses the structure of X.

But 1. is hard.

Algorithmically: Need the SVD of a n × p matrix −→ O(np2).

Statistically: p � n =⇒ V̂ is inconsistent for the population analogue.
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Fixing the di�culties

"Supervised" PCA First screen away most of the variables using Y.

Solves both problems if Å
[
XjY

]
= 0⇒ β∗,j = 0.

See work of Bair+Paul+Hastie (2004, 2006, 2008) or Tay, Friedman, Tibshirani
(2018)

"Sparse" PCA Solve a constrained version of 1.

Good statistical properties for 1. but ignores Y

See d’Aspremont et al. (2007) Johnstone and Lu (2009) Zhang and Ghaoui (2011),
among others
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Our version — Fantope regression

Two stages:
1. V̂ = argmax

0�VV>�I
tr(V)=d

tr
(
V>X>XV

)
− λ‖VV>‖1,1

2. γ̂FR = argmin
γ∈Òd

1
2n
‖Y − XV̂γ‖22

β̂FR ← V̂γ̂FR

‖VV>‖1,1 forces rows of V to be 0

Vj = 0⇒ Vjγ = 0⇒ Xj doesn’t predict Y.

Vu et al. (2013) call 1. “Fantope projection”, nearly minimax optimal

Bad algorithmic properties: O(# iterations × p3)
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Alternating direction method of multipliers

Restate your optimization

Original Equivalent

min
x

f (x) + g(x) min
x,z

f (x) + g(z)

s.t. x − z = 0

Then, iterate the following with ρ > 0

x← argmin
x

f (x) +
ρ

2
‖x − z + u‖22

z← argmin
z

g(z) +
ρ

2
‖x − z + u‖22

u← u + x − z
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Why would you do this?

• It decouples f and g
• If f and g have the right structure =⇒ parallelizable
• There are often many ways to decouple a problem
• The individual minimizations don’t have to be solved in closed form

ADMM for Fantope projection:

A← ΠFd

(
V − U +

1
nρ

X>X
)

V ← Sλ/ρ(A + U)

U← U + A − V

[Sa(b)]k = sgn(bk)( |bk | − a)+
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Projecting onto the Fantope

Given an eigen decomposition of Z =
∑
i γiziz>i .

ΠFd(Z) =
∑
i

γ+i (θ)ziz
>
i

γ+i (θ) = min(max(γi − θ, 0), 1), θ s.t.
∑
i

γ+i (θ) = d

• The γ-θ stu� solves a monotone, piecewise linear equation.

• But we have to do the decomposition at every iteration.
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Conditions for convergence of ADMM

• When the updates are exact, all you need for convergence is

1. f , g are convex, extended real valued.
2. f (x) + g(z) + u>(x − z) has a saddle point.

• The convergence rate is not well understood (seems linear).

• It turns out, you can solve the minimizations approximately.

∞∑
k=1

‖Π(yk) − Π̃(yk)‖2 < ∞

• We do that using earlier work (Homrighausen and McDonald, 2016)

Eckstein and Bertsekas 1992
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Results in simulations

# covariates selected

MSE
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Theoretical results

Assume many conditions, s := |β∗ |, supp(v) := {j : vj , 0},

Theorem

‖β̂FR − β∗‖2 = OP

(
σ

√
(s2 + d) log p

n

)
,

and ���supp(β̂FR) 4 supp(β∗)��� = OP

(
σ

√
s2 log p

n

)
.
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The big picture



Statistics + optimization + approximation

When you have large datasets and complicated estimators

1. Algorithms can avoid hard computations, enable inference.
2. Understanding how algorithms work can motivate statistical advances.
3. Understanding statistics may motivate new algorithms.
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Related work on statistics + optimization + approximation

• Approximation for Least Squares (n � p)
• Homrighausen and McDonald. (2019+). Under review.

• Approximation for dimension reduction (p � n)
• Homrighausen and McDonald. (2016). JCGS.
• Ding and McDonald. (2017). Bioinformatics.
• Ding and McDonald. (2019). Under review.

• Algorithms for large data
• ADMM for large constrained kernel PCA.
• McDonald and Khodadadi. (2019). AAAI.
• Trend �ltering for Spatio-temporal exponential families.
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Tuning parameter selection and risk estimation

• GCV and SURE for compressed regression

• SURE for exponential families.

• CV and `1 regularization

• Homrighausen and McDonald. (2013). ICML.
• Homrighausen and McDonald. (2014). Machine Learning.
• Homrighausen and McDonald. (2017). Stat. Sinica.

• Dependence and high dimensions

• Homrighausen and McDonald. (2018). JSCS.
• McDonald and Shalizi. (2018+). Under review.
• McDonald, Shalizi and Schervish. (2017). JMLR.
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Collaborators and funding

55



Appendix
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ADMM for Spatio-Temporal Trend �lter

Algorithm 1 Linearized ADMM

1: Input data y, penalty matrix D, ε, ρ, λt, λs > 0.
2: Set h← 0, z← 0, u← 0. B Initialization
3: repeat

4: hk ←W
(
y2k
µ exp

(
1−µuk
µ

))
+ 1−µuk

µ for all k = 1, . . . TS. B Primal update

5: z← Sρλ(u). B Elementwise soft thresholding
6: u← u − z. B Dual update
7: until max{‖Dh − z‖, ‖zm+1 − zm‖} < ε
8: Return z.
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Results

Average variance

Change in average variance from 1961–2011
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The Qmatrix

Gaussian Well behaved distribution and eas(ier) theory. Dense matrix

Fast Johnson-Lindenstrauss Methods

Randomized Hadamard (or Fourier) transformation. Allows for O(np log(p)) computations.

Subsampling Q = πτ for π a permutation of I and τ = [Iq 0]. QX means “read q (random) rows”

Sparse Bernoulli

Qij
i.i.d.
∼


1 with probability 1/(2s)

0 with probability 1 − 1/s

−1 with probability 1/(2s)

This means QX takes O
( qnp
s

)
“computations” on average.
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Why combine?

• Y = Xβ̂ + ê with P(̂e ∈ col(X)) = 0, and Å [̂e] = 0.

β̂FC(0) = (X>Q>QX)†X>Q>QY = (X>Q>QX)†X>Q>Q(Xβ̂ + ê)

= β̂ + (X>Q>QX)†X>Q>Q̂e

⇒ Å
[
β̂FC(0)

]
= Å

[
β̂
]
= β∗

β̂PC(0) = (X>Q>QX)†X>Y = (X>Q>QX)†X>(Xβ̂ + ê)

= (X>Q>QX)†X>Xβ̂

⇒ Å
[
β̂PC(0)

]
= (X>Q>QX)†X>Xβ∗
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Simulation setup (n � p)

• Draw Xi ∼ MVN(0, (1 − ρ)Ip + ρ11>)

• Draw β ∼ N(0, τ2Ip)

• Draw Yi = X>i β∗ + εi with εi ∼ N(0,σ
2).

• For this model, the optimal estimator (in MSE) is

β̂B = (X>X + λ∗Ip)−1X>Y

with λ∗ = σ2

nτ2
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Divergence of Linear Combination

De�ne the linear combination prediction as ŶLC = XB(λ)α̂LC = XB(λ)
(
B>(λ)X>XB(λ)

)†B>(λ)X>Y
and let Z := XB(λ) so that Z(Z>Z)†Z>Y =: PZY.

Theorem:

divlin(λ) = α̂FCdfFC + α̂PCdfPC + tr(PZ) − α̂PC tr(PZHPC) − α̂FC tr(PZHFC)

− tr
(
Z†[HPCŶLC HFCŶLC]

)
.
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Divergence of Convex Combination

Theorem:

divcon(λ) = α̂PCdfPC + (1 − α̂PC)dfFC

+
(Y − ŶFC)>HPC (̂YPC − ŶFC)(̂
YPC − ŶFC

)> (̂
YPC − ŶFC

) + Ŷ>PC(In − HFC)(̂YPC − ŶFC)(̂
YPC − ŶFC

)> (̂
YPC − ŶFC

)
−

2
(̂
YPC − ŶFC

)> (
Y − ŶFC

)
( (̂
YPC − ŶFC

)> (̂
YPC − ŶFC

))2 (̂YPC − ŶFC)>(HPC − HFC)(̂YPC − ŶFC).
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Flop count for di�erent algorithms

Approach O(·)

Linear system np2 + p3

Low-rank linear system npr + r3

Gradient descent n3/2p2 log ε−1

Acc. gradient descent n5/4p3/2 log ε−1

Coordinate descent n3/2p log ε−1

SVRG, SDCA, SAG (np + n1/2p2) log ε−1

Catalyst, APPA (np + n3/4p3/2) log ε−1

DSPDC npr + (nr + n3/4p3/2r) log ε−1

Iterative Hessian sketch np log p + n1/4p3/2r log2 ε−1

Dual random projection np log n + (nr2 + r3) log ε−1 65



Genes and the SPC model

sparsity of Σ−1xx 1.0000 0.9999 0.9998 0.9995 0.9991 0.9984 0.9975 0.9963 0.9946 0.9922

% non-zero β∗ ’s 0.0162 0.0216 0.0287 0.0418 0.0618 0.0843 0.1193 0.1803 0.2645 0.3699

False Negative Rate 0.0000 0.2500 0.4340 0.6117 0.7374 0.8077 0.8641 0.9100 0.9387 0.9562
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