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Obligatory “data are big” slide

Modern statistical applications — genomics, neural image analysis, text analysis, weather
prediction — have large numbers of covariates p

Also frequently have lots of observations n

Need algorithms which can handle these kinds of data sets — with good statistical properties



Lesson of the talk

Computational choices impact statistical performance

These choices can take many forms:

+ choosing tuning parameters
- different optimization algorthms return different solutions
+ how long do we run our MCMC (and which kind do we use)

Statistical theory often neglects these choices:

+ LASSO works with oracle tuning parameter

« We have the posterior if our MCMC runs forever

« EM gives us a global solution

« Algorithmic guarantees hold uniformly over ALL datasets



Today’'s emphasis

Many statistical methods or optimization algorithms use a singular value decomposition (SVD):

X=UDV' :U"U=1, V'V =1, Ddiagonal.

+ Penalized Least Squares:

|
i - IY =XBIi; + APen(p)

- PCA: LR
.0

max tr (V' XTXv)
VTv=l4



The SVD is computationally expensive.

For a generic n X p matrix, the SVD requires O (min {np?, n?p}) and storage of the entire matrix
in fast memory.

| want to understand the statistical properties of some approximations that speed up
computation and save storage.

1. Better algorithmic choices allow us to solve a statistical problem.
2. Algorithmic advances suggest new statistical techniques.
3. Statistical models suggest better algorithms.



2. Climate science and choosing better algorithms

3. Approximations for many observations and robust statistics
4. Many measurements and better approximate algorithms

5. Ongoing/related/future work



Estimating the trend in cloud-top
temperature volatility



Climate change

The scientific consensus is that

1. World-wide climate is changing.
2. This change is mostly driven by human behavior.

Glebatbwarming — climate change: the distribution of temperature (and precipitation) is
changing

Increasing mean temperature understates the costs:

1. More frequent extremes have severe effects
2. Local discrepancies lead to more storms
3. Temporal dependencies mean persistence



Using weather satellites

Drivers of climate variation:

Total cloud moan- 6671 percent

1. Ocean currents
2. Jet stream

43GBRESEBANEREE

3. Annular modes + El Nifio/La Nina

4. Cloudiness

CLARREO satellite: monitor cloud top temperature as it relates to climate.

+ Has yet to launch, no sooner than 2022
 Defunded in most recent federal budget

Source: NCAR CCSM3 Diagnostic Plots.



CLARREO vs MetOp/Modis
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+ Weather satellites aren't made for this.
+ More information in higher moments than in average?

Source: Wielicki, et al. (2013).



Satellite data

Once collaborators do lots of processing...

* 52,000 time series
« daily records over ~ 40 years

“trends” are local, nonlinear, not sinusoidal

1 June 2000

temperature (°C)
=)

1994 1996 1998 2000 2002

— Bloomington — Manaus — San Diego
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Trends in variance

Let y;s be the observed temperature at time t and location s.
Yis ~ N(0, exp(hss))

Estimate h, but it should be “smooth” relative to space and time.

Use a matrix D + penalty to encode this smoothness.

"



Optimization problem

q —hs
min > hs +ye ™" + Al|Dhl

Standard optimizer: Primal Dual Interior Point method.

20

Temperature (°C)

1994 1996 1998 2000 2002

— Bloomington, IN — Estimated SD

see Tibshirani (2014) or K-K-Boyd-G (2009)
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Generic PDIP

1. Start with a guess h("
Solve a linear system [Au = v]
Calculate a step size

& @ ©

Iterate 2 & 3 until convergence

The matrix A changes each iteration, dense, and roughly 10° X 10°.

This isn’t going to work.
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Detailed PDIP

Primal Dual

mhin f(h) + Al|Dh]l, mvin f*(=DTv)
st V[l <A

* f(h) = 3 hst + yge "
+ F(u) = Bust — 1) log 25+ uge — 1

1—Ust

KKT conditions (w > 0) =

VF*(=DTv) + D(v — A1) Ty — D(v + A1) T, o

—pa(v = A1) + (v + A1) —w" o)

rW(V’,u1nu2) =

+ As w — oo, this converges to the optimum.
+ But this is a nonlinear system, can't solve.
+ Use Newton steps, which give the [Au = v] thing

+ Aisthe Jacobian of ry,. 4



Hints and caveats

+ New algorithms: Khodadadi and M. (2019)
- Don't have to invert that matrix

+ Must repeat for many tuning parameters

+ Current work studies statistical properties:
« — Algorithm is “exact”, no statistical loss
* This is the best case
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Solving big regression problems
approximately



Core techniques

Suppose we have a matrix X € R™P and vectorY € R"

Model:
Y=XB. +¢€

Least squares ,E = argming 5-[IXB — Y|

Ridge regression f,(A) = argming |8 — Y2 + 218112
LASSO B,(A) = argming [|XB — Y|2 + A||]l;

Dantzig selector

Group LASSO



Typical results for approximation

The general philosophy: Find an approximation ,5 that is as close as possible to the solution of
the original problem UNIFORMLY.

OLS:

IXB = YI < (1+€)lIxB ~ I3

Ridge:

. . _ A~
IXB = YIi; + %Ilﬂlli < (1+¢€) | IXB(A) = YII; + ;II,Bz(/l)Ilz2

etc.



Statistical analysis

For an approximation 8 ofa

Ell6 -6l = Ell6 -6 +6-6|;
= [EApprox error® + MSE(@) +2E [(Approx error) (5— 9)]

< sup (Approx error®) + MSE(8)
+ 2 sup (Approx error) X RMSE(@)



Statistical analysis

For an approximation 8 ofa

Ell6 -6l = Ell6 -6 +6-6|;
= [EApprox error® + MSE(@) +2E [(Approx error) (5— 9)]

< sup (Approx error®) + MSE(8)
+ 2 sup (Approx error) X RMSE(@)

<cC (sup (Approx error®) + MSE(§))

+ Previous work examines Approx error, assumes MSE(8) small



Statistical analysis

For an approximation 8 ofa
E||6 — 8|2 = var(d) + Bias(d)?
E|l6 -8l =E6-6+6-0]
= [EApprox error® + MSE(@) +2E [(Approx error) (5— 9)]

< sup (Approx error®) + MSE(8)
+ 2 sup (Approx error) X RMSE(@)

<cC (sup (Approx error®) + MSE(§))

+ Previous work examines Approx error, assumes MSE(8) small

- We examine the MSE of the procedure



Bias-variance tradeoff

model complexity —

- We examine E||6 — |2 where the expectation is over everything.
+ Only other similar is Ma, Mahoney, and Yu (JMLR, 2015).
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Core techniques for least squares

If X fits into RAM, there exist excellent algorithms in LAPACK that are

+ Double precision

+ Very stable

+ 0(np?) when n > p.

+ O(n’p) when n < p.

* require extensive random access to matrix

There is a lot of interest in finding and analyzing techniques that extend these approaches to
large(r) problems

20



Out-of-core techniques for least squares

Many techniques focus on randomized compression

This is sometimes known as sketching or preconditioning

Rokhlin, Tygert, (2008) “A fast randomized algorithm for overdetermined linear least-squares
regression.”

+ Drineas, Mahoney, et al., (2011) “Faster least squares approximation.”

+ Woodruff, (2014) “Sketching as a Tool for Numerical Linear Algebra.”

+ Wang, Lee, Mahdavi, Kolar, Srebro, (2017) "Sketching meets random projection in the dual."
- Ma, Mahoney, and Yu, (2015), "A statistical perspective on algorithmic leveraging."

- Pilanci and Wainwright, (2015-2016). Multiple papers.

+ Others.

21



Compression

Basic Idea (n > p):

+ Choose some matrix Q € R¥" ,

+ Under many conditions, sufficient to choose g = Q(p).
+ Use QX (and) QY instead in the optimization.

« 0(np?) — 0(p>).
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Compression

Basic Idea (n > p):

+ Choose some matrix Q € R¥" ,

+ Under many conditions, sufficient to choose g = Q(p).
+ Use QX (and) QY instead in the optimization.

« 0(np?) — 0(p>).

Basic Idea (n < p):

« Choose some matrix Q € RP*7,

+ Under many conditions, sufficient to choose g = Q(n).
+ Use XQ instead in the optimization.

« 0(n?*p) — 0o(nd).
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Compression

Basic Idea (n > p):

+ Choose some matrix Q € R¥" ,

+ Under many conditions, sufficient to choose g = Q(p).
+ Use QX (and) QY instead in the optimization.

« 0(np?) — 0(p>).

Basic Idea (n < p):

« Choose some matrix Q € RP*7,

+ Under many conditions, sufficient to choose g = Q(n).
+ Use XQ instead in the optimization.

« 0(n?*p) — 0o(nd).

Finding QX for arbitrary Q and X takes O(gnp) computations.
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Solving large least-squares problems

Large n smaller p:

1.

Introduce 2 new versions of compression.

2. General theoretical techniques.
3.
4. Compression a bit worse under “nice” model. But better with outliers.

Show how to choose tuning parameters (without extra computation).

Large p smaller n:

1.
2%
3.

Procedure for low-rank (sparse) regression.
Statistical performance is near-optimal under the right model.

Algorithm is approximate, but doesn’t lose anything.

23



Lots of observations




Family of 4 (current SOTA)

1. Full compression:

Prc argéninllQ(Xﬁ -9l

argmin||QXB||? — 2y Q" axB
B

— (XTQTQX)—1XTQTQY
2. Partial compression:

Bec = argmin||QXB|[; —2v" X3
B
— (XT QT QX)—‘IXTY
Also called "Hessian Sketching".

24



Family of 4 (our versions)

Write:
B = Bec Brc |
W = XB

3. Linear combination compression:

ajin = argmin||Wa — Y||2
o
Elin = Ba'\lin

4. Convex combination compression:

argmin||Wa — Y/||2
o<a

> a=1

Econ = Ba, con

Acon

25



Turns out that FC is unbiased = worse than OLS (has high variance)
PC is biased and empirics demonstrate low variance
Combination should (and does) give better statistical properties

We do everything with an ¢, penalty

26



Timing vs. accuracy

increase in MSE computation time
100.0%
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75.0%
50.0%
0.5%
25.0%
L0 ] 0.0% I
10° 10° 10 10° 107 10° 10* 10°

compression size (q)

— convex — FC — linear— PC — ridge
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% best method
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Tuning parameters selection

+ We use GCV with the degrees of freedom:

IXB) - Y2

Gevd) = (1— df/n)?

« df is easy for full or partial compression (though ignored in literature)
« For the other cases, an ad hoc approximation works, but has no justification.
+ We derive an estimate via Stein’s method.

« Easy to calculate both for a range of A without extra computations.

30



Stein’s method details

 The degrees of freedom for a generic predictor f is
n
1
di(f) = — Z Cov(Y;, £i(Y)).
i=1

+ For normal linear model (OLS), we have
1 N 1
df = ;[E[(Y E[Y ]) (Y- yy)] E[Y"HY] = p.
« In general, Stein’s Lemma gives us the following: if Y; — E [Y;]X;] ~ N(o, o?)

Cov(Y;, fi(Y)) = E[(vi — E[VilXiD fi(¥)] = E[Vfi(V)].

See e.g. Efron

31



Applying it

Because linear and convex combination compression have closed form expressions:

e.g. Linear combination:

f(Y) = [XB] [(BTXTXB)_1 BTXTY]

where
Q'qy

B = [(XTQTQX + /\I)”XT]
14

Apply every calculus rule you can find to yield a nasty expression which won't fit on this slide.

This is an unbiased estimate of df.

32



Risk estimation accuracy
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Predicting read counts
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Standard ridge results

Theorem

bias® (,62(/1) | x) = RBIV(D* + Al) VT B,.

tr (Var [ﬁz(/l) |X]) = Gzi (d;cf/\)z‘

35



MSE of Full Compression

Theorem
bias? [Brc | X| = 2B V(D* + Alp) 2V B, + 0p(1)
tr(var [ 11]) = o° Z gy o)
+ % tr (diag(vec (In)M"M ® (1 — H)MB. B M (1 — H))

tr(Mm ™)

+ % tr ((1 = HYMB. B MT (1 = H)M M) .

Note: M = (XX + Al,)'XT and H = XM

36



Corollary

Ty —
If IXTX = Ip,

wse (B) = (%) * T o

2 N po? N b%p63(s — 2)+ p26%b?
6 n(1+ 6)? q(1+0)4 q(1+0)4

MSE (Bec) = b (1

2

2 _ 2 2
L_P p(s —2)+b . pb
6 n(1+60)2  q(1+6)?2 g1+ 6)

o +|o +

MSE (Bec) = b (1

where b® := [|B.]|2,and 8 := A/n

37



+ All the estimators depend (at least) on

x"QTQx + Alp) ™
- We derived properties of Q" Q

E [EQTQ} 1,
q

Var [vec (EQTO)] Bt ) diag(vec (In)) + L+ ko
q q q q

+ So the technique is to do a Taylor expansion around §QTQ = e

38



The takeaway message

Compression works in a fraction of the time.
Combining standard (FC and PC) is better.
Their genesis is an examination of the statistical performance.

Are there models under which compressed estimators are better?

39



The takeaway message

Compression works in a fraction of the time.
Combining standard (FC and PC) is better.
Their genesis is an examination of the statistical performance.

Are there models under which compressed estimators are better?

Answer: YES! If there are outliers that are also high leverage.

39



Proof of concept

0.75 L}

MSE(convex) / MSE(ridge)
5
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Lots of measurements




Algorithmic methods (SOTA)

“Random projection”

OLS:
= argmin —[|xay — v|2
= argmin — -
Y gy on Y 2
Bre < QY
Before, sketched the covariance XX — XT Q' QX.

RP sketches the Gram matrix XX — XQTQx".

So existing analyses are equivalent: as long as the sketching grabs most of the action.

Al



Grabbing the action

Before, we needed to get the high-leverage rows.

Now, we need “the high-leverage columns”.

Means most of the predictive information comes from a few variables.
Essentially, a low-rank predictor, driven by a few variables.

This is just sparse PCA regression.

42



Grabbing the action

Before, we needed to get the high-leverage rows.

Now, we need “the high-leverage columns”.

Means most of the predictive information comes from a few variables.
Essentially, a low-rank predictor, driven by a few variables.

This is just sparse PCA regression.

We do that instead.



High-dimensional PCR

Two stages:

1. V = argmaxtr (V' X"Xv)
VTV=lg

2

_ o1 =
2. Yper = argmin —||Y = XVy|[;
yERd 2n

ﬁpcr — V?pcr
Here, V is analogous to Q but it uses the structure of X.
But 1. is hard.
Algorithmically: Need the SVD of a n X p matrix — 0(np?).

Statistically: p > n = V is inconsistent for the population analogue.

43



Fixing the difficulties

"Supervised" PCA First screen away most of the variables using Y.
Solves both problems if E [X,-Y] =0= f,j=0.

See work of Bair+Paul+Hastie (2004, 2006, 2008) or Tay, Friedman, Tibshirani
(2018)

"Sparse" PCA Solve a constrained version of 1.
Good statistical properties for 1. but ignores Y

See d’Aspremont et al. (2007) Johnstone and Lu (2009) Zhang and Ghaoui (2011),
among others

44



Our version — Fantope regression

Two stages:
1. V=argmaxtr (VI XTXV) — AW '],
tr(v)=d

= o1 —~
2. Y = argmin — |y — Xvy|;
)’ERd 2n

Brr < V¥ir
\VWT||,., forces rows of V to be o
Vi = 0= Vjy = 0 = X; doesn’t predict Y.
Vu et al. (2013) call 1. “Fantope projection”, nearly minimax optimal

Bad algorithmic properties: O(# iterations X p3)

45



Alternating direction method of multipliers

Restate your optimization

Original Equivalent
min  f(x) + g(x) min  f(x) + g(2)
X X,z

st. x—z=0

Then, iterate the following with p > 0

x < argmin f(x) + £||x—z+ ull2
. 2
. ,0 2
z « argming(z) + 5||x—z+ ull
z
Ue—u+x-—z
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Why would you do this?

It decouplesfand g

- If f and g have the right structure = parallelizable

« There are often many ways to decouple a problem

+ The individual minimizations don’t have to be solved in closed form

ADMM for Fantope projection:

A e Mg (v-u+éxTx)

Ve Syp(A+U)
U—U+A-V

[Sa(b)]r = sgn(br)(|br| — a)+

47



Projecting onto the Fantope

Given an eigen decomposition of Z = }; y,-z,~z,.T.
Np(@) = ) ¥ @)z
i

Y (6) = min(max(y; - 6, o), 1), 6 st. Z y (0 =d

« The y-6 stuff solves a monotone, piecewise linear equation.

+ But we have to do the decomposition at every iteration.
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Conditions for convergence of ADMM

« When the updates are exact, all you need for convergence is

1. f, g are convex, extended real valued.
2. f(x) + g(z) + u" (x — z) has a saddle point.

+ The convergence rate is not well understood (seems linear).

* It turns out, you can solve the minimizations approximately.
kY _ T3k
DINER) =AML < oo
k=1

+ We do that using earlier work (Homrighausen and McDonald, 2016)

Eckstein and Bertsekas 1992

49



Results in simulation

MSE precision
fps

Sartasso - -

Ridge
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N —— — R
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Adp+OLS e . —“— . . —-—

Adp+Lasso
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Theoretical results

Assume many conditions, s := |B.|, supp(v) := {j : v; # 0},

1Bre - Bulls = Op (W%),
V n

Theorem

and

supp(Brr) A supp(f.)
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The big picture




Statistics + optimization + approximation

When you have large datasets and complicated estimators

1. Algorithms can avoid hard computations, enable inference.
2. Understanding how algorithms work can motivate statistical advances.
3. Understanding statistics may motivate new algorithms.
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Related work on statistics + optimization + approximation

- Approximation for Least Squares (n > p)
+ Homrighausen and McDonald. (2019+). Under review.
« Approximation for dimension reduction (p > n)
+ Homrighausen and McDonald. (2016). JCGS.
+ Ding and McDonald. (2017). Bioinformatics.
+ Ding and McDonald. (2019). Under review.
+ Algorithms for large data
+ ADMM for large constrained kernel PCA.
+ McDonald and Khodadadi. (2019). AAAI.
« Trend filtering for Spatio-temporal exponential families.

53



Related work on statistics + optimization + approximation

- Approximation for Least Squares (n > p)
« Homrighausen and McDonald. (2019+). Under review.
« Approximation for dimension reduction (p > n)
+ Homrighausen and McDonald. (2016). JCGS.
+ Ding and McDonald. (2017). Bioinformatics.
+ Ding and McDonald. (2019). Under review.
« Algorithms for large data
+ ADMM for large constrained kernel PCA.
» McDonald and Khodadadi. (2019). AAALI.
« Trend filtering for Spatio-temporal exponential families.
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Tuning parameter selection and risk estimation

+ GCV and SURE for compressed regression
+ SURE for exponential families.

« CVand ¢, regularization

+ Homrighausen and McDonald. (2013). ICML.
+ Homrighausen and McDonald. (2014). Machine Learning.
+ Homrighausen and McDonald. (2017). Stat. Sinica.

- Dependence and high dimensions

+ Homrighausen and McDonald. (2018). JSCS.
+ McDonald and Shalizi. (2018+). Under review.
» McDonald, Shalizi and Schervish. (2017). JMLR.
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Collaborators and funding

Institute for

New Economic
Thinking

55



Appendix
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ADMM for Spatio-Temporal Trend filter

Algorithm 1 Linearized ADMM

1. Input data y, penalty matrix D, €, p, At, As > O.

2: Seth <« 0,z 0,u « 0. > Initialization
3: repeat

4 hy — "W(yﬁi exp (:ﬂ)) + % forallk=1,...Ts. > Primal update
5.z Spa(u). > Elementwise soft thresholding
6: U<—U-—2Z > Dual update
7: until max{||Dh — z||, [|2™*" -Z"||} <€

8: Return z.
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Average variance
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The Q matrix

Gaussian Well behaved distribution and eas(ier) theory. Dense matrix
Fast Johnson-Lindenstrauss Methods
Randomized Hadamard (or Fourier) transformation. Allows for O(np log(p)) computations.
Subsampling Q = &7 for 7 a permutation of 1 and T = [l 0]. QX means “read g (random) rows”

Sparse Bernoulli
1 with probability 1/(2s)
Qjj " 1o with probability 1 — 1/s

—1 with probability 1/(2s)

This means QX takes O (%) “computations” on average.
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- Y = XB + e with P(é € col(X)) = 0, and E [¢] = o.

Bre(0) = (X"@Tax)’xTaar = (x"Q"ax)'X QT a(XB + )
=B+(xX"Q"ax)'x"Q"qe
= E|Br0)| =E |B] = .
Bec(0) = (XTQTaX)'XTY = (X" QT ) XT(XB + )
= (X"Q" ) xTxB

= E [Brc(0)] = ("Q" @0 X" X8,
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Simulation setup (n > p)

« Draw X; ~ MVN(o, (1 — p)l, + p11")
- Draw 8 ~ N(o, 7°Ip)
- Draw Y; = X." B. + €; with ; ~ N(0, o).

« For this model, the optimal estimator (in MSE) is
Bs = XX+ Adp)"XTY

with A, = o
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Divergence of Linear Combination

Define the linear combination prediction as Y;c = XB(A)ac = XB(/l)(BT(A)XTXB(A))TBT(/\)XTY
and let Z := XB(A) so that 2(Z72)TZTy =: P,v.

Theorem:

diviin(A) = Apcdfrc + apcdfpc + tr(Pz) — apc tr(PzHpc) — A tr(PzHec)

—tr (ZT [HecYic HFCVLC]) .
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Divergence of Convex Combination

Theorem:

diveon(A) = apcdfpc + (1 — apc)dfrc
(Y = Yec) "Hpc (Yo — Yec) N VpTc(’n — Hre)(Yoe — Vec)
(YPC - YFC) (YPc - YFC) (YPC - YFC) (YPC - YFC)

— — T —
2 (YPC - YFC) (Y - YFC)

(=) =)

3 (Yec = Yee) " (Hpc — Hec)(Yec — Yrc)-
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Flop count for different algorithms

Approach o(")
Linear system np* + p3
Low-rank linear system  npr +r3

Gradient descent

Acc. gradient descent
Coordinate descent
SVRG, SDCA, SAG
Catalyst, APPA

DSPDC

Iterative Hessian sketch

Dual random projection

n3/2p? loge™

n5/4p3/2 log e~
n32ploge™

(np + n"/2p?) loge™

(np + n3/“p3/2) loge™

npr + (nr + n3/4p3/2r) loge™
nplogp + n"4p3/2rlog? e~

nplogn + (nr? + r¥) loge™ -




Genes and the SPC model

sparsity of Xy 1.0000 0.9999 0.9998 0.9995 0.9991 0.9984 0.9975 0.9963 0.9946 0.9922
% non-zero fy's 0.0162 0.0216 0.0287 0.0418 0.0618 0.0843 01193 01803 0.2645 0.3699
False Negative Rate 0.0000 0.2500 0.4340 0.6117 07374 0.8077 0.8641 0.9100 0.9387 0.9562
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