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These are my cats
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Poisson model

yi is the number of vomits on day i

Poisson distributed with time-varying parameter φi

L(φ | y) =
∏n

i=1
φ
yi
i exp(−φi)

yi !

Goal: estimate φ from data, φ should be “smooth”.

Set θi = logφi

minimize
θ∈Òn

1> exp(θ) − y>θ + λ ‖Dθ‖1

D matrix encodes smoothness
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Trend �ltering
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What’s this talk about?

Trend �ltering is not new.

Aside from small specializations,

• the theory is for Gaussian mean

• the algorithms are for Gaussian mean on grids or tree-like graphs

• the implementations work on “small” data

• λ selection is for Gaussian mean

See Hütter and Rigollet (2016); Kim et al. (2009); Sadhanala et al. (2017); Tibshirani (2014); Wang et al. (2016)
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What’s this talk about?

We generalize to exponential families

1. Provide some algorithms that work on big data

2. Select λ reasonably

3. Near-minimax theoretical guarantees

Motivated by a climate change study
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Estimating the trend in cloud-top
temperature volatility



Climate change

The scienti�c consensus is that

1. World-wide climate is changing.
2. This change is mostly driven by human behavior.

Global warming −→ climate change: the distribution of temperature (and precipitation) is
changing

Increasing mean temperature understates the costs:

1. More frequent extremes have severe e�ects
2. Local discrepancies lead to more storms
3. Temporal dependencies imply persistence
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Using weather satellites

Drivers of climate variation:
1. Ocean currents
2. Jet stream
3. Annular modes
4. Cloudiness

CLARREO satellite: monitor cloud top temperature as it relates to climate.

• Originally slated to launch in 2020
• Trump Administration killed it in 2017
• Revived by NASA last year
• Launching no sooner than 2023

Source: NCAR CCSM3 Diagnostic Plots.
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CLARREO vs MetOp/Modis

required for decadal climate change observations. 
Fifth, CLARREO has demonstrated that scene and 
viewing geometry-dependent polarization distribu-
tion models (PDMs) (Nadal and Breon 1999; Maignan 
et al. 2009) allow CLARREO to determine the scan-
angle-dependent polarization sensitivity of imagers 
such as VIIRS, AVHRR, or geostationary imagers, 
as well as to enable those instruments to remove this 
scene-dependent polarization dependence (Lukashin 
et al. 2012). Sixth, the CLARREO 90° inclined polar 
orbit (see Table 1) slowly drifts through all 24 hours 
of local solar time over 6 months. This orbit allows 
reference intercalibration orbit crossings with satel-
lites at all latitudes, which is important for verifying 
accuracy across all climate regimes, as well as for 
verifying if instruments have orbit-dependent calibra-
tion changes, especially from the different hot/cold 
parts of the orbit in or out of direct solar illumination. 
By contrast, sun-synchronous satellites only cross 
orbits at polar latitudes, which is another limita-
tion of current GSICS methods. Simulations show 

that CLARREO reference 
intercalibration sampling 
is sufficient to determine 
i nst r u ment  ga i ns  a nd 
offsets on a monthly time 
scale, while polarization 
sensitivity, nonlinearity, 
and orbit position depen-
dence can be achieved on 
annual time scales.

In Fig. 6, CLARREO 
crosses under the Suomi 
National Polar-Orbiting 
Partnership (NPP) or Joint 
Polar Satellite System-1 
(JPSS-1) orbit. CLARREO 
matches elevat ion and 
azimuth directions across 
the cross-track scans of 
CERES, VIIRS, and CrIS by 
setting the azimuth angle 
of the CLARREO instru-
ment to match the NPP 
scan plane and then slowly 
rotates the CLARREO RS 
spectrometer (mounted on 
a gimbal) to match view-
ing zenith angles across 
the entire scan during the 
orbit crossing. The azimuth 
angle for this match varies 
from orbit crossing to orbit 

crossing but is essentially constant for any single orbit 
crossing (Roithmayr and Speth 2012).

The time available for the matching scan is 
directly proportional to the orbit altitude separa-
tion of the two spacecraft. Spacecraft at the same 
altitude have only a few seconds to obtain the entire 
scan swath, while several minutes are available for 
an orbit separation of 100 km or more (Roithmayr 
and Speth 2012). For this reason, the CLARREO 
design orbit altitude is ~600 km—sufficiently high 
to minimize fuel use for orbit control, sufficiently 
low to minimize launch vehicle requirement for 
mass to orbit, and well below the typical polar 
orbiter altitudes of ~825 km [NPP, JPSS, and the 
Meteorological Operational Satellite (METOP)] to 
increase the matched scan angle intercalibration 
time. Thus, the orbit selection and gimbal azimuth/
elevation-pointing capability will allow CLARREO 
to increase reference intercalibration sampling 
by more than a factor of 100 compared to current 
GSICS capabilities, whereas typical SNOs restrict 

FIG. 6. As the CLARREO orbit (red; 609-km altitude, 90° inclination) crosses 
that of a satellite such as NPP or MetOp (green) (827-km altitude, 1330 LT sun-
synchronous orbit with 98.7° orbit inclination) with an operational sensor, the 
CLARREO infrared and reflected solar spectrometers gather data matched 
in time, space, and angle of view to provide reference intercalibration SI-
traceable spectra for operational sensors that cannot achieve climate change 
accuracy directly. As a metrology transfer standard in orbit, CLARREO is an 
anchor for the climate observing system.
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uncertainty dominates the accuracy of global average 
trends. Uncertainty in climate sensitivity is driven 
primarily by uncertainty in cloud feedback, which in 
turn is driven primarily by low cloud changes varying 
Earth’s albedo (Solomon et al. 2007; Bony et al. 2006; 
Soden et al. 2008). We can derive a simple metric of 
cloud feedback for reflected solar by considering the 
trend in global mean shortwave cloud radiative forc-
ing (SW CRF) (Soden et al. 2008; Loeb et al. 2007). 
Global mean SW CRF is simply the difference be-
tween all-sky and clear-sky reflected flux.

As for temperature trends (Fig. 3a), the perfect 
observing system again shows the need for long cli-
mate records for accurate trends in SW CRF (Fig. 3b). 

What about time to detect trends? Using Leroy et al. 
(2008b) we can defi ne an analogous uncertainty factor 
Ut—the ratio of the time to detect a trend using a real 
observing system to the time to detect a trend using a per-
fect observing system. Such a ratio can be defi ned for any 
climate variable or statistical confi dence bound desired. 
Again extending the results from Leroy et al. (2008b),

  
(2)

The only difference between Eqs. (1) and (2) is that the 
square root on the right side of the equation becomes a 
cube root. Since Ua and Ut are always greater than 1, and 
are usually near 1, Eqs. (1) and (2) show that

  (3)

Another way of interpreting Eq. (3) is that the degradation 
of trend accuracy for time to detect trends is only two-
thirds of the degradation for accuracy in trends. For exam-
ple, the CLARREO requirement that Ua < 1.2 equivalently 
requires that Ut < 1.13. How do we interpret the meaning 
of Ut = 1.13? If a perfect observing system could detect a 
temperature trend with 95% confi dence in 20 years, then 
the CLARREO observing system could detect the same 
trend with 95% confi dence in 23 years (13% more time).

These equations give a simple but powerful way to 
understand the value of observing system accuracy for both 
climate trend accuracy (e.g., tests of climate predictions) and 
time to detect trends (e.g., public policy decisions). They also 
provide a way to compare consistent metrics across a wide 
range of climate variables, as well as a wide range of sources 
of uncertainty in climate observations. We strongly encour-
age use of this approach to more rigorously understand and 
optimize climate observation requirements across the wide 
range of essential climate variables (ECVs) (GCOS 2011). 
This is especially important given the limited resources avail-
able for global climate observations (Trenberth et al. 2013).

FIG. 3. The relationship between absolute calibration 
accuracy and the accuracy of global average decadal cli-
mate change trends. Trend accuracy shown for a perfect 
observing system (black), varying levels of instrument ab-
solute accuracy (solid color lines) for possible CLARREO 
requirements, and current instruments in orbit (dashed 
lines). Shown are (a) the relationship between infrared 
spectra accuracy and temperature trends and (b) the 
relationship between reflected solar spectra and changes 
in broadband CRF and cloud feedback. The figures show 
the dramatic effect of instrument accuracy on both cli-
mate trend accuracy (vertical axis) as well as the time to 
detect trends (horizontal axis). The green vertical line for 
reflected solar shows the range of CMIP3 climate model 
simulations (Soden and Vecchi 2011). Larger values of 
decadal change in SW CRF indicate larger values of cloud 
feedback (Soden et al. 2008).
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• Weather satellites aren’t made for this.
• More information in higher moments than in average?

Source: Wielicki, et al. (2013). 10



Satellite data

Once collaborators do lots of processing. . .
• 52,000 time series
• daily records over ∼ 50 years
• “trends” are local, nonlinear, not sinusoidal
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Trends in variance

• Let Xijt be the observed temperature at time t and location (i, j).

• Suppose Xijt ∼ Normal
(
0,σ2ijt

)
• (Follows sophisticated detrending)

• Estimate σ2, but it should be “smooth” relative to space and time.

• Use a matrix D+ penalty to encode this smoothness.
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Exponential families, standard examples

Gaussian
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Natural exponential family

Let X be a random variable with pdf/pmf fX(x;φ)

If I can write
fX(x) = h(x) exp

(
y(x) · θ(φ) − A(θ)

)
Then, X belongs to the (single parameter) exponential family of distributions

Using (Y, θ) instead of (X, φ) is the “natural” parameterization
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Trend �ltering



Optimization problem

General: Yi ∼ ExpFam(θi)
min
θ∈Θ

1>A(θ) − y>θ + λ ‖Dθ‖1

Gaussian: Xi ∼ N(µi, 1)

min
µ∈Òn

1
2
‖x − µ‖22 + λ ‖Dµ‖1 = min

θ∈Òn

1
2
θ>θ − y>θ + λ ‖Dθ‖1

Gaussian: Xi ∼ N(0, σ2i )

min
θ∈(−∞,0)n

−
1
2
1> log(−θ) − y>θ + λ ‖Dθ‖1

θ = − 1
2σ2 , y = x2 , and A(z) = − 12 log(−z)
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Smoothness and penalty order, Dmatrices
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Quadratic Poisson trend �ltering
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Derivative properties

estimated theta 1st derivative 2nd derivative

Dec '18 Jun '19 Dec '19 Dec '18 Jun '19 Dec '19 Dec '18 Jun '19 Dec '19
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Relations to other (similar) methods

Locally adaptive regression splines

min
f ∈Fk

1
2n
‖y − f ‖22 + λTV(f

(k))

• k = 0, 1 is equivalent to TF; k ≥ 2, equivalent as n→∞
• TF computations cost O(n) compared to O(n3)

Smoothing splines

min
f ∈W(k+1)/2

1
2n
‖y − f ‖22 + λ

∫
X

(
f (

k+1
2 )(t)

)2
dt

• Similar computational burden (if B-spline basis)
• TF is more adaptive for equivalent complexity

see Green and Silverman (1994); Mammen and van de Geer (1997); Wahba (1990)
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Complexity

The Degrees of Freedom measures “complexity”

Think OLS: p predictors and intercept −→ df = p + 1

TF + Gaussian mean: df = Å [# knots] + k + 1

d̂f = # knots + k + 1

Smoothing splines have same degrees of freedom

2nd derivative

Dec '18 Jun '19 Dec '19
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Local adaptivity
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Local adaptivity
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Algorithms



Optimization problem

min
θ
1>A(θ) − y>θ + λ ‖Dθ‖1

Standard optimizer: Primal Dual Interior Point method

Alternatively: Alternating Direction Method of Multipliers

see Kim et al. (2009); Tibshirani (2014)
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Alternating direction method of multipliers

Restate the problem

Original Equivalent

min
x

f (x) + g(x)
min
x,z

f (x) + g(z)

s.t. x − z = 0

Then, iterate the following:

x← argmin
x

f (x) +
ρ

2
‖x − z + u‖22

z← argmin
z

g(z) +
ρ

2
‖x − z + u‖22

u← u + x − z

24



Why would you do this?

Decouples f and g

If f and g are nice, can be parallelized

Converges under very general conditions

Often many ways to decouple a problem
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Decoupling example (Gaussian mean)

Original Equivalent

min
θ

1
2
θ>θ − y>θ + λ ‖Dθ‖1

min
θ,α

1
2
θ>θ − y>θ + λ ‖α ‖1

s.t. Dθ − α = 0

θ ← argmin
θ

1
2
θ>θ − y>θ +

ρ

2
‖α − Dθ + u‖22

α ← argmin
α

λ ‖α ‖1 +
ρ

2
‖Dθ − α + u‖22

u← u − Dθ + α
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Decoupling example (Gaussian mean)

Original Equivalent

min
θ

1
2
θ>θ − y>θ + λ ‖Dθ‖1

min
θ,α

1
2
θ>θ − y>θ + λ ‖α ‖1

s.t. Dθ − α = 0

θ ← matrix multiply

α ← elementwise soft-threshold

u← add vectors
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Decoupling example (Gaussian mean)

Original Equivalent

min
θ

1
2
θ>θ − y>θ + λ ‖Dθ‖1

min
θ,α

1
2
θ>θ − y>θ + λ ‖α ‖1

s.t. Dθ − α = 0

θ ←
(
In + ρD>D

)−1 (y + ρD>(α + u))
α ← Sλ/ρ(Dθ + u)

u← u − Dθ + α

[Sa(b)]k = sign(bk)( |bk | − a)+
26



What about for climate data?

Existing implementations of PDIP/ADMM are fast because D is banded, loss is quadratic

Climate data is over a 3D grid (lat × lon × time)

But not quite a grid because observations are on a sphere

So D is not banded and loss isn’t quadratic

27



What about for climate data?

D is now dense and 109 × 109

D>D occupies 8000 Petabytes, and you have to invert it

Need custom algorithms/code
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Consensus version

!"

!#

time

Requires very few iterations, but iterations cost O (|block|3). Can parallelize over blocks.
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Consensus version

!"

!#

time

xg ← use PDIP on smaller blocks

θ ← average over groups

ug ← add vectors

Requires very few iterations, but iterations cost O (|block|3). Can parallelize over blocks.
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Grid world

Requires many iterations, but iterations cost O (|line|). Can parallelize over lines.
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Grid world

θijt ← �nd a root

each line← 1D TF with the convex loss

dual variables← add vectors

Requires many iterations, but iterations cost O (|line|). Can parallelize over lines.
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Our algorithms

We develop two new ADMM-type algorithms

Choice depends on computing architecture

Simulations: 4 sec vs 2 hours at 400 iterations

Smaller problems don’t need these details

Must repeat for many tuning parameters
0.0

0.5

1.0

1.5

100 200 300 400
iterations

(f
−

f* )
n

consensus
lines

see Khodadadi and McDonald (2019) for details
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Tuning parameter selection



Unbiased risk estimation

MSE(λ) = Å
[θ0 − θ̂λ(Y)2

2

]

If Y ∼ (θ0,σ2In), then

MSE(λ) = Å
[Y − θ̂λ(Y)2

2

]
− nσ2 + 2tr Cov

(
Y, θ̂λ(Y)

)
If θ̂λ(y) = Wy, then tr Cov

(
Y, θ̂λ(Y)

)
= σ2tr (W)

M̂SE(λ) =
Y − θ̂λ(Y)2

2
− nσ2 + 2df, df := 1

σ2 tr(W)

e.g. Efron (1986)
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Extensions

Stein (1981):

- Assume Y ∼ Normal(θ0,σ2In)

+ θ̂λ(Y) weakly di�erentiable

Eldar (2009):

+ Assume Y ∼ ExpFam(θ0), continuous (a.e.)

+ θ̂λ(Y) weakly di�erentiable

Both cases

1. Unbiased estimator of MSE(λ)

2. Need to know ∂θ̂λ, i
∂Yi
(Y), the divergence

Problems: (1) We don’t want the MSE. (2) We don’t know the divergence.
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Estimating KL

Stein KL Estimator:

K̂L
(
θ0‖ θ̂λ

)
=

〈
θ̂λ +

h′(y)
h(y)
, A′

(
θ̂λ

)〉
+

〈
A′′(θ̂λ),

∂θ̂λ,i

∂yi
(y)

〉
− 1>A(θ̂λ)

with Å
[
K̂L

(
θ0 ‖ θ̂λ

)]
= KL

(
θ0 ‖ θ̂λ

)
− A(θ0).

Solves 1.

Variance estimation:

K̂L
(
θ0 ‖ θ̂λ

)
=
1
4

〈
y, θ̂−1λ

〉
+

〈
θ̂−2λ ,

∂θ̂λ,i

∂yi
(y)

〉
+
1
2
1> log(−θ̂λ) −

1
2

see Deledalle (2017) 33
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1
2
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Estimating KL

Stein KL Estimator:
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The divergence (our result)

De�ne ΠD, the projection onto the rows of D with Dθ̂ = 0.

For trend �ltering with exponential family loss:

∂θ̂λ,i

∂yi
(y) =

((
ΠDdiag

(
A′′(θ̂λ)

)
ΠD

)†)
ii

Solves 2.

Variance estimation: A′′(θ) =
1
2θ2

K̂L
(
θ0 ‖ θ̂λ

)
= −

1
2
+

∑
i

yi
4θ̂λ,i

+

2
((
ΠDdiag

(
θ̂−2λ

)
ΠD

)†)
ii

θ̂2
λ,i

+
log(−θ̂λ,i)

2
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Bene�ts

− Compare to Gaussian case: d̂f = tr(ΠD) (Tibshirani and Taylor, 2012)

+ Measures the curvature correctly (compared to MSE)

+ No sample splitting, recomputing

+ Interpretable

+ Estimates the risk we control theoretically
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Convergence result

1. λn is large enough to control the empirical process
2. θ0 is k-times di�erentiable, and TV(θ

(k)
0 ) < Cn

3. Observations on a d-dimensional regular grid
4. Ignore log factors which are myriad and ugly

Theorem:

1
n
KL

(
θ0 ‖ θ̂λn

)
=


Op

( ( 1
n

) k+1
d
)

d ≥ 2k + 2

Op
( ( 1

n

) 2k+2
2k+2+d

)
d < 2k + 2
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Notes on our theorem

1
n
KL

(
θ0 ‖ θ̂λn

)
=


Op

( ( 1
n

) k+1
d
)

d ≥ 2k + 2

Op
( ( 1

n

) 2k+2
2k+2+d

)
d < 2k + 2

− Our log factors are worse than for (sub)-Gaussian case

− Our log factors are worse than some tailored proofs elsewhere

+ Ignoring log factors, this is minimax optimal

see also Sadhanala et al. (2017)
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Sketch of proof

• Can use properties of exponential families to get “Basic inequality”

KL
(
θ0 ‖ θ̂

)
≤ (Y − A′(θ0))>(θ0 − θ̂) + λ ‖Dθ0‖ − λ

Dθ̂
• First term is empirical process, second term controlled by λ

• Y − A′(θ0) is mean zero, sub-exponential

• Play some games

. . . 15 pages of LATEX. . .
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Empirical results
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Change in estimated SD (1960s vs 2000s)
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Change in mean temperature (1960s vs 2000s)
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Observed temperatures in Toronto (1960s vs 2000s)
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Conclusion



Wrapping up

We generalized TF to exponential families

• Developed tailored algorithms for some big data
• Derived risk estimator to select λ w/o excess computation
• Proved theory for nonparametric function estimation

Future work

• Do we care about θ? A′(θ)?
• Multiparameter exponential families?
• Model selection in discrete case?
• TF shrinks the estimate. Maybe reestimate using learned knots?
• Model misspeci�cation relative to the actual data
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Real MODIS track
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Research overview



Motivation

Computational choices impact scienti�c conclusions

These choices can take many forms:

• selecting tuning parameters
• di�erent optimization algorthms return di�erent solutions
• how long do we run our MCMC (and which kind do we use)

Statistical theory often neglects these choices:

• LASSO works with oracle tuning parameter
• We have the posterior if our MCMC runs forever
• EM gives us a global solution

46



Theory + Algorithm + Tuning parameter

Applications demand techniques that couple

1. computational considerations
2. statistical regularization

Therefore, two important questions must be addressed:

1. How does the algorithm impact the science?
2. How do we select tuning parameters when computations are at a premium?
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My research program seeks. . .

1. to enable application through reasoned tuning parameter selection; (Homrighausen and
McDonald, 2013, 2014, 2017, 2018)

2. to deepen the theoretical understanding of approximate algorithms; (Ding and McDonald, 2017,
2019; Homrighausen and McDonald, 2016, 2019)

3. to develop approximation and tuning parameter selection techniques for dependent data;
(McDonald, 2019; McDonald and Shalizi, 2019a,b; McDonald et al., 2011, 2015)

4. to characterize the e�ects of algorithmic or other approximations in nonparametrics;
(McDonald, 2017; McDonald et al., 2017, 2019a)

5. to apply the proposed tools to meaningful applications. (Ding and McDonald, 2017, 2019;
Khodadadi and McDonald, 2019; McDonald and Shalizi, 2019a; McDonald et al., 2019b)
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Research overview

How do we select tuning parameters when computations are at a premium?

How does the algorithm impact the science?

My research program seeks to demonstrate

1. How to select tuning parameters in various contexts.
2. How algorithms can enable scienti�c conclusions.
3. How we can use approximate algorithms to improve some inferential procedures.
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Collaborators and funding
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Appendix
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Generic Primal Dual Interior Point

1. Start with a guess θ(1)

2. Solve a linear system [Ms = v]
3. Calculate a step size
4. Iterate 2 & 3 until convergence

M is a function of D and θ

Banded for TF

So 2 and 3 are solved in linear time.
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Detailed PDIP

Primal Dual

min
θ

f (θ) + λ ‖Dθ‖1 min
v

f∗(−D>v)

s.t. ‖v‖∞ ≤ λ

• f (θ) :=
∑
θi + yie−θi

• f∗(u) :=
∑
(ui − 1) log

yi
1−ui + ui − 1

Perturbed KKT conditions (w > 0) =⇒

rw(v, µ1, µ2) :=

+f∗(−D>v) + D(v − λ1)>µ1 − D(v + λ1)>µ2

−µ1(v − λ1) + µ2(v + λ1) − w−11

 =

0

0


• As w→∞, this converges to the optimum.

• But this is a nonlinear system, can’t solve.

• Use Newton steps, which give the [Ms = v] thing

• M is the Jacobian of rw . 54



Locally adaptive regression splines

min
f ∈Fk

1
2n
‖y − f ‖22 + λTV(f

(k))

• Fk =
{
f : [0, 1] → Ò, f (k) exists a.e. , TV

(
f (k)

)
< ∞

}
• Solution is a kth-degree spline (Mammen and van de Geer, 1997)

• k ≥ 2 knots are not generally at the input points

• Not generically computable, but a close relative is (whose knots are at the inputs)

• Solve
min
θ

1
2n
‖y − Gθ‖22 + λ ‖Cθ‖1

• Either G or C dense, (n × n).
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Smoothing splines

min
f ∈W(k+1)/2

1
2n
‖y − f ‖22 + λ

∫
X

(
f (

k+1
2 )(t)

)2
dt

• W(k+1)/2) =
{
f : [0, 1] → Ò, f (k) exists ,

∫
X

(
f (

k+1
2 )(t)

)2
dt < ∞

}
• Solution is a kth-degree spline (Wahba, 1990)

• k needs to be odd

• One way to solve:
min
θ

1
2n
‖y − θ‖22 + λ ‖Kθ‖1

• K is banded, so solution requires O(n) computations.
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What our data look like

cylindrical
projection
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Consensus version

!"

!#

time

min
xg=θ [g

∑
g∈G

−`(xg) + λ
Dg·xg1

xg ← argmin
xg
−`(xg) + λ

Dg·xg1
+ u>(xg − θ) +

ρ

2

xg − θ22
θ ← avg(xg + ug/ρ)

ug ← ug + ρ(xg − θ)
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Grid world

min
θ=a=b=c

∑
ijt

−`(θijt) + λ
∑
it

‖Dai·t‖1

+ λ
∑
jt

Db·jt1 + λ∑
ij

Dcij·1
θijt ← solution of A′(θijt) = k(1)ijt θijt + k

(2)
ijt

[a, b, c] ← TF1d ([a, b, c] + [u, v,w])

[u, v,w] ← [u, v,w] + θ − [a, b, c]

k(1), k(2) ← simple linear functions of a, b, c, u, v,w
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Stein’s unbiased risk estimator

• If Y ∼ Normal (θ0, σ2In)
• And θ̂λ(·) weakly di�erentiable with ess. bounded partials

tr Cov
(
Y, θ̂λ(Y)

)
= σ2

∑
i

Å

[
∂θ̂λ,i

∂Yi
(Y)

]
• Ingredients for Stein’s Unbiased Risk Estimator:

1. Expression for risk I want (here MSE) w/o dependence on parameters

2. Expression for Å
[
∂θ̂λ, i
∂Yi
(Y)

]
(Stein, 1981)
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Generalized SURE for continuous exp fam

• If pθ(y) = h(y) exp(θ>y − 1>A(θ))
• And h(·) is weakly di�erentiable

Å
[
θ>0 θ̂λ(Y)

]
= −Å

[〈
h′(Y)
h(Y)
, θ̂λ(Y)

〉
+

∑
i

(
∂θ̂λ,i

∂Yi
(Y)

)]
GSURE: unbiased estimator of Å

[θ0 − θ̂λ2
2

]
θ̂λ2

2
+ 2

(
h′(y)
h(y)

)>
θ̂λ + 2

∑
i

(
∂θ̂λ,i

∂yi
(y)

)
+
tr (h′′(y))

h(y)

(Eldar, 2009)
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The Divergence

De�ne ΠD = DD†, the projection onto null(D).

For TF for Gaussian mean:

d̂f(θ̂λ) =
∑
i

∂θ̂λ,i

∂yi
(y) = tr(ΠD) = nullity(D) = # knots + k + 1

Count the pieces + k + 1

2nd derivative

Dec '18 Jun '19 Dec '19

(Tibshirani and Taylor, 2012)
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Which classes and cannonical scaling

• D is such that it smooths over axis parallel lines in the grid

• De�neKk
d (Cn) = {θ : ‖Dθ‖1 < Cn}

• De�neH k+1
d (L) to be the Hölder class containing discretized Hölder smooth-functions with

k derivatives

• Can show thatH k+1
d (L) ⊂ K

k
d (cLn

1−(k+1)/d)

• This gives the lower bound.

• Linear smoothers can’t achieve this rate (Donoho and Johnstone, 1998)
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Con�dence intervals

Like LASSO other `1-regularized methods, this is biased

Full Hessian at the solution would be insane

Marginal coverage could be done numerically (but the bias)

One approach would be “relaxed” TF

(Very) recent work uses this for LASSO CIs

Ongoing work with Max Ferrell at Chicago Booth

Also, how does the (known) bias compare to the (unknown) misspeci�cation
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Sources of misspeci�cation

Real satellite track

Track overlap

Angular distortion of instruments

Degradation of instrument quality (theoretically,
more in mean than variance)

Intersatellite calibration

Data interpolation from AVHRR and HIRS

changed little (Fig. 1). In addition, the European Orga-
nisation for the Exploitation of Meteorological Satellites
(EUMETSAT) recently launched two weather satellites,
MetOp-A and MetOp-B (top rows in Fig. 1), each con-
taining new andmore capable instruments along with the
legacy AVHRR and HIRS instruments. MetOp-C will
also carry an AVHRR but not a HIRS. While the ob-
servational record has considerable uncertainty, a clear
advantage of the combined AVHRR–HIRS record is
that it spans over three decades and continues to
lengthen. The International Satellite Cloud Climatology
Project (ISCCP) (Rossow and Schiffer 1991) is com-
monly used to assess cloud changes over the last 35 years.
However, while ISCCP has shown some skill in detecting
latitudinal shifts in cloud fraction (Bender et al. 2011;
Marchand 2013), there are limitations in this dataset that
need to be corrected for with regard to cloud type trend
detection (Norris and Evan 2015). Furthermore, the sin-
gle infrared 11-mm channel that is made available is not
capable of resolving spectral IR changes in clouds si-
multaneously within window and absorbing bands. These
narrowband IR observations are available from the
HIRS instruments but remain highly underutilized as a

full spectrum for assessment of clouds, their adjacent
thermodynamic environments, and covariances among
the radiances between channels.
The intersatellite biases within the NOAA polar or-

biter data record, due to both uncertainties in spectral
response functions and orbital drift in the presence of a
diurnal cycle, have hampered the construction of a rig-
orous and comprehensive dataset for all of the climate-
related variables these instruments are capable of
characterizing. While climate data records (CDRs) have
been created using cloud properties from AVHRR
(Foster and Heidinger 2013; Sun et al. 2015), the radi-
ance CDRs derived from HIRS data have not been ex-
ploited for discerning spectral infrared features among
different cloud types, which is potentially richer than
that available fromAVHRR alone. Furthermore, HIRS
and AVHRR data have not been combined to in-
vestigate spectral IR cloud changes in the context of
climate variability, let alone a changing climate. Pre-
vious research efforts such as Frey et al. (1996) used
AVHRR to screen for clouds, and Baum et al. (1992,
1994) used selected HIRS channels to improve cloud
type determination. But these studies, along with

FIG. 1. Timeline of NOAA polar-orbiting satellite instrument status. For each satellite, the
instrument status for HIRS (upper) and AVHRR (lower) is denoted by color, as shown in the
legend. Reasons for changes in status are noted, where known. ‘‘Not operational’’ denotes data
not being used operationally, and it does not necessarily imply that no data are available. One
notable example of this is the HIRS/4 instrument aboard N18, which is still producing data,
albeit with substantial noise. The asterisk (*) denotes that AVHRR aboard N17 is still oper-
ational after January 2009, but we avoid data from this time period. The question mark (?)
denotes status changes for which the cause is not known by the authors.
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Source: (Staten et al., 2016)
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My research program seeks. . .

1. to enable application through reasoned tuning parameter selection;

• A study on tuning parameter selection for the high-dimensional lasso. Homrighausen and McDonald. JSCS.
(2018)

• Risk consistency of cross-validation for lasso-type procedures. Homrighausen and McDonald. Statistica Sinica.
(2017)

• Leave-one-out cross-validation is risk consistent for lasso. Homrighausen and McDonald. Machine Learning.
(2014)

• The lasso, persistence, and cross-validation. Homrighausen and McDonald. ICML. (2013)

• SURE for logistic regression. McDonald and Tibshirani. (in progress)

• Approximate Rademacher Complexities. McDonald. (in progress)
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CV “works” for lasso

Under strong conditions

Å
[(
Y0 − X>0 β̂λ̂

)2]
= OP

(
s log(p) log(n)

n

)
Under weak conditions

Å
[(
Y0 − X>0 β̂̂t

)2]
− Å

[ (
Y0 − X>0 βtn

)2]
= o(1)

for tn = o

((
n

log(p) log(n)

) 1/4)
, ‖β ‖1 ≤ tn.

CV "costs" log(n).
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My research program seeks. . .

2. to deepen the theoretical understanding of approximate algorithms;

• On the Nyström and column-sampling methods for the approximate principal components analysis of large
data sets. Homrighausen and McDonald. JCGS. (2016)

• Compressed and penalized linear regression." Homrighausen and McDonald. JCGS. (2019+)

• Predicting phenotypes from microarrays using ampli�ed, initially marginal, eigenvector regression. Ding and
McDonald. Bioinformatics. (2017)

• Su�cient principal component regression. Ding and McDonald. (submitted)
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Su�cient PCR

Suppose yi = x>i β
∗ + εi

Previous work:

• Assume that Cov(y, Xj) = 0⇒ β ∗j = 0.
• Algorithm: 1. screen by covariance, 2. perform PCR

Our work:

• Note that
v (

Å
[
X>X

] )
j


2
= 0⇒ β ∗j = 0.

• Algorithm: 1. Perform regularized PCR

Intuition:
β ∗ = Å

[
X>X

]−1
Å

[
X>y

]
= VD−2V>VDU>y = VD−1U>y

(Bair and Tibshirani, 2004; Bair et al., 2006; Paul et al., 2008; Tay et al., 2018)
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Su�cient PCR

MSE # Features Selected
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Su�cient PCR

Theorem

Assume many conditions, s := |β∗ |, supp(v) := {j : vj , 0},

X (
β̂ − β∗

)
2
= OP

(
σ

√
(s2 + d) log p

n

)
,

and ���supp(β̂ ) 4 supp(β∗)��� = OP

(
σ
s2 log p

n

)
.

71



Algorithmic tricks

This methodology uses two insights from earlier work (Homrighausen and McDonald, 2016, 2019)

1. Random projection works well when it gets the columns that have the most information.

2. SVD is computationally expensive. ADMM steps can be approximate under certain
conditions.
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Econ forecasting models don’t know “output” from “interest”
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Economic forecasting models will never learn
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My research program seeks. . .

4. to characterize the e�ects of algorithmic or other approximations in nonparametrics;
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Densities under the triangular array

Suppose your data is supported on a low-dimensional manifold.

You don’t know the dimension, start small and increase as you collect more data.

No theory saying how to increase the dimension

Examples:
• PCA + density estimation, what d to use?
• How many brain regions can we estimate a density
over?
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Main result

If p ≥ 2, \0 < a ≤ A < ∞ independent of d, n such that
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My research program seeks. . .

5. to apply the proposed tools to meaningful applications.

• Markov-switching state space models for uncovering musical interpretation. McDonald, McBride, Gu, and
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Clustering Chopin’s Mazurka with learned interpretations

Shebanova 2002 Wasowski 1980

Luisada 1991 Milkina 1970
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