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y; is the number of vomits on day i

Poisson distributed with time-varying parameter ¢;

¢ exp(~¢)
L |y) = L, =

Goal: estimate ¢ from data, ¢ should be “smooth”.
Set 8; = log ¢;
minimize 1" exp(8) —y '8 + A ||DI||,
6eRn

D matrix encodes smoothness



Trend filtering
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What's this talk about?

Trend filtering is not new.

Aside from small specializations,
« the theory is for Gaussian mean
« the algorithms are for Gaussian mean on grids or tree-like graphs
+ the implementations work on “small” data

+ A selection is for Gaussian mean

See Hiitter and Rigollet (2016); Kim et al. (2009); Sadhanala et al. (2017); Tibshirani (2014); Wang et al. (2016)



What's this talk about?

We generalize to exponential families

1. Provide some algorithms that work on big data
2. Select A reasonably

3. Near-minimax theoretical guarantees



What's this talk about?

We generalize to exponential families

1. Provide some algorithms that work on big data
2. Select A reasonably

3. Near-minimax theoretical guarantees

Motivated by a climate change study



Estimating the trend in cloud-top
temperature volatility



Climate change

The scientific consensus is that

1. World-wide climate is changing.
2. This change is mostly driven by human behavior.

Glebatbwarming — climate change: the distribution of temperature (and precipitation) is
changing

Increasing mean temperature understates the costs:

1. More frequent extremes have severe effects
2. Local discrepancies lead to more storms
3. Temporal dependencies imply persistence



Using weather satellites

ISCCP D2
Total cloud mean= 66.71 percent

Drivers of climate variation:

Min = 18.35 Max = 95.78

. Ocean currents

=

. Jet stream

o ERBREEBTIHIRES

2
3. Annular modes
4. Cloudiness

CLARREO satellite: monitor cloud top temperature as it relates to climate.

- Originally slated to launch in 2020

« Trump Administration killed it in 2017
+ Revived by NASA last year

« Launching no sooner than 2023

Source: NCAR CCSM3 Diagnostic Plots.



CLARREO vs MetOp/Modis
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+ Weather satellites aren’t made for this.

+ More information in higher moments than in average?

Source: Wielicki, et al. (2013). 10



Satellite data

1 July 2010

Once collaborators do lots of processing...
* 52,000 time series
« daily records over ~ 50 years
« “trends” are local, nonlinear, not sinusoidal

2002 2004 2006 2008 2010

— Bloomington — Manaus — Vancouver 1



Trends in variance

- Let Xjj: be the observed temperature at time t and location (i, j).
+ Suppose Xji ~ Normal (o, ogt)
« (Follows sophisticated detrending)

« Estimate o, but it should be “smooth” relative to space and time.

+ Use a matrix D + penalty to encode this smoothness.

12



Exponential families, standard examples

Gaussian gamma beta
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Natural exponential family

Let X be a random variable with pdf/pmf fy(x; ¢)

If | can write

) = hix) exp () - 0() ~ A®)]

Then, X belongs to the (single parameter) exponential family of distributions

Using (Y, ) instead of (X, ¢) is the “natural” parameterization

14



Trend filtering



Optimization problem

General: Y; ~ ExpFam(6;)
min 17A(8) —y "0 + A ||D||,
6cO

15
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Optimization problem

General: Y; ~ ExpFam(6;)
min 17A(8) —y "0 + A ||D||,
6cO

Gaussian: X; ~ N(uj, 1)

o1 , 1
min - ||x — + A||Dull, = min =670 —y"0 + A||DO
2 [Ix — pl]3 (1Dl g = y D6,

Gaussian: X; ~ N(o, 07)
: U T
min  ——1 log(—0)—y 6+ A||DO
pomin =7 log(~6) ~y70 + A D8]

6= —ﬁ,y =x?,and A(z) = -1 log(-2)
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Smoothness and penalty order, D matrices
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Quadratic Poisson trend filtering
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Looks visually like a smoothing spline, but more locally adaptive

Works well on functions of “bounded variation”: /X 16%) (x)|dx < oo



Derivative properties
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Relations to other (similar) methods

Locally adaptive regression splines

o 2 (k)
min - + ATV
i lly — £lI3 ()
« k=0, 1is equivalentto TF; k > 2, equivalentas n — oo

« TF computations cost O(n) compared to O(n?)

Smoothing splines
1 R+1 2
min  Zly-flg+a [ (1)) a
FeEWkin, 2N : X
« Similar computational burden (if B-spline basis)
 TF is more adaptive for equivalent complexity

see Green and Silverman (1994); Mammen and van de Geer (1997); Wahba (1990)

19



Complexity

The Degrees of Freedom measures “complexity”

2nd derivative

Think OLS: p predictors and intercept — df = p + 1 -
TF + Gaussian mean: df = [E [# knots] + kR + 1 _- . -
(ﬁz#knots+k+1 - _

Smoothing splines have same degrees of freedom Dec18  Jin19  Dec'ls

20



Local adaptivity

3.

0.25 0.50 0.75 1.00

— trendfilter, df=50 — spline, df=50 — spline, df=90
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Local adaptivity
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Algorithms




Optimization problem

mein 17A0) -y "6 + A||DE,

Standard optimizer: Primal Dual Interior Point method

Alternatively: Alternating Direction Method of Multipliers

see Kim et al. (2009); Tibshirani (2014)

23



Alternating direction method of multipliers

Restate the problem

Original Equivalent
min  f(x) + g(2)
X,z

min  f(x) + g(x)
X st. x—z=0

Then, iterate the following:
x < argmin f(x) + P Ix —z+ull3
X 2
; P 2
z —argming(2) + = |Ix —z + u|;
5 2

Uu«—u+x-—z

24



Why would you do this?

Decouples f and g
If f and g are nice, can be parallelized
Converges under very general conditions

Often many ways to decouple a problem

25



Decoupling example (Gaussian mean)

Original Equivalent

1
| min -0'0 -y 6+ A|al,
min -070 -y’ + A||DI||, ba 2
6 2
st.t Df—-—a =0

1
0 «— argmin-6"6—-y'0+ P lla — D8 + ul?
2] 2 2
. P 2
a — argminA||a||, + = ||D8 — o + u|[;
o 2

u—u-D0+a

26



Decoupling example (Gaussian mean)

Original Equivalent

1
5 min -0'0 -y 6+ A|al,
min -070 -y’ + A||DI||, ba 2
6 2
st. Df—a =0

6 < matrix multiply
a < elementwise soft-threshold

u <« add vectors

26



Decoupling example (Gaussian mean)

Original Equivalent

1
| min -0'0 -y 6+ A|al,
min -070 -y’ + A||DI||, ba 2
6 2
st.t Df—-—a =0

8 «— (I +pD™D) " (y + pD" (e + u))
& — Sy,,(D6 + u)

u«—u-—-D8+a

[Sa(b)lk = sign(br)(|bk| — a)+
26



What about for climate data?

Existing implementations of PDIP/ADMM are fast because D is banded, loss is quadratic
Climate data is over a 3D grid (lat X lon X time)
But not quite a grid because observations are on a sphere

So D is not banded and loss isn't quadratic

27



What about for climate data?

D is now dense and 10° X 10°
DT D occupies 8000 Petabytes, and you have to invert it

Need custom algorithms/code

27



Consensus version

28



Consensus version

Xg «— use PDIP on smaller blocks
6 < average over groups

ug < add vectors

(/.
07@

Requires very few iterations, but iterations cost O (|block|?). Can parallelize over blocks.

28
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8jj < find a root

each line « 1D TF with the convex loss

dual variables « add vectors

Requires many iterations, but iterations cost O (|line|). Can parallelize over lines.

29



Our algorithms
We develop two new ADMM-type algorithms

1.51

Choice depends on computing architecture

1.0
=
o == CONSensus
. . . . il = lines
Simulations: 4 sec vs 2 hours at 400 iterations S
0.5
Smaller problems don’t need these details
. 0.0
Must repeat for many tuning parameters 100 200 300 200
iterations

see Khodadadi and McDonald (2019) for details

30



Tuning parameter selection




Unbiased risk estimation

MSE(A) = E [ 8o — Ba(Y) ]

e.g. Efron (1986)

31



Unbiased risk estimation

MSE(A) = E [ 8o — Ba(Y) ]

IfY ~ (65, 0%l,), then

MSE(A) = E [”Y - éﬂv)”] — no? + 2tr Cov (Y, @(Y))

e.g. Efron (1986)

31



Unbiased risk estimation

MSE(A) = E [ 8o — Ba(Y) ]

ify~ (90’ Gzln), then
— 2 .
MSEA) = E [Hv - eA(Y)H | = no? +2tr cov (v, Bav)
2
If 6;(y) = Wy, then tr Cov (y, é}(y)) = o2tr (W)

- e 2
MSE(A) = ||y - GA(Y)H — no? + 2df, df = Ltr(W)
2

e.g. Efron (1986)
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Stein (1981):
- Assume Y ~ Normal(8,, o1,)

+ gA(Y) weakly differentiable
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Stein (1981):
- Assume Y ~ Normal(8,, oI,)
+ @(Y) weakly differentiable
Eldar (2009):
+ Assume Y ~ ExpFam(6,), continuous (a.e.)

+ §A(Y) weakly differentiable
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Stein (1981):
- Assume Y ~ Normal(8,, oI,)
+ @(Y) weakly differentiable
Eldar (2009):
+ Assume Y ~ ExpFam(6,), continuous (a.e.)
+ §A(Y) weakly differentiable
Both cases
1. Unbiased estimator of MSE(A)

%i(y), the divergence

2. Need to know oY,
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Stein (1981):
- Assume Y ~ Normal(8,, oI,)
+ @(Y) weakly differentiable
Eldar (2009):
+ Assume Y ~ ExpFam(6,), continuous (a.e.)
+ §A(Y) weakly differentiable
Both cases
1. Unbiased estimator of MSE(A)

%i(y), the divergence

2. Need to know oY,

Problems: (1) We don’t want the MSE. (2) We don’t know the divergence.
32



Estimating KL

Stein KL Estimator:

—~

@ (0n18:) = (@ + 12 w (@) + <A"<é}), %*j%y>> ~TA@)

see Deledalle (2017) 33



Estimating KL

Stein KL Estimator:

—~
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Estimating KL

Stein KL Estimator:

@ (0n18:) = (@ + 12 w (@) + <A"<é}), %*j’(y>> ~TA@)

with E [:?L (eo I é})] = KL (eo I é}) — A6).

Solves 1.

see Deledalle (2017) 33



Estimating KL

Stein KL Estimator:

@ (0n18:) = (@ + 12 w (@) + <A"<é}), %*j’(y>> ~TA@)

with E [:?L (eo I é})] = KL (eo I é}) — A6).
Solves 1.

Variance estimation:

0.1 - 1y 87 o (57 0]+ 1 B0 -

see Deledalle (2017) 33



Estimating KL

Stein KL Estimator:

—~

(618 = @A+ngA%60)+Q%@x%%#w>—ﬂM@>

with E [:?L (eo I é})] = KL (eo I é}) — A6).
Solves 1.

Variance estimation:

o AN 1L an L [aa 9B .
m@wijwwbzgw>4%wm7

see Deledalle (2017) 33



The divergence (our result)

Define [y, the projection onto the rows of D with D6 = o.

For trend filtering with exponential family loss:

36,

O_y,(y) = ((ﬂpdiag (A”(’B\,\)) nD)T)

ii

34



The divergence (our result)

Define [y, the projection onto the rows of D with D6 = o.

For trend filtering with exponential family loss:

36,

O_y,(y) = ((ﬂpdiag (A”(’B\,\)) nD)T)

ii

Solves 2.
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The divergence (our result)

Define [y, the projection onto the rows of D with D6 = o.

For trend filtering with exponential family loss:

%(y) = ((”Ddiag (@) ”D)T)

ii

Solves 2.

-
Variance estimation: A”(6) = —
262

((I'Ipdiag (5;2) nD)T)“ og(Bi)

I?L(Go I @) ——+Z = + .

49)& i

34



Compare to Gaussian case: df = tr([p) (Tibshirani and Taylor, 2012)

+ Measures the curvature correctly (compared to MSE)

+

No sample splitting, recomputing

+

Interpretable

+ Estimates the risk we control theoretically

35



Theory




Convergence result

1. A, is large enough to control the empirical process
2. 0, is k-times differentiable, and TV(Gc(,k)) < Cp

3. Observations on a d-dimensional regular grid

4. Ignore log factors which are myriad and ugly

Theorem:
R+1
Op(()d) d>2k+2

1
1 . L
;KL (90 ” 9/\,,) = : ng-f—zd

Op((ﬁ)““ ) d<2rR+2

36



Convergence result

1. A, is large enough to control the empirical process
2. 0, is k-times differentiable, and TV(Gc(,k)) < Cp

3. Observations on a d-dimensional regular grid
4

. Ignore log factors which are myriad and ugly
Theorem:
k+1
Op(()d) d>2RrR+2

1
1 . L
;KL (90 ” 9/\,,) = : ng-f—zd

Op((ﬁ)““ ) d<2rR+2

36



Notes on our theorem

_ o, | (2 T) d>2k+2
2kt (60 118,,) =1 (”)ﬁ
n Op((ﬁ)2k+z+d) d<2r+2

— Our log factors are worse than for (sub)-Gaussian case
— Our log factors are worse than some tailored proofs elsewhere

+ Ignoring log factors, this is minimax optimal

see also Sadhanala et al. (2017)

37



Sketch of proof

« Can use properties of exponential families to get “Basic inequality”

KL (eo I 5) < (Y = A(65))T (6 — B) + A ||DBo|| — A Hné”

« First term is empirical process, second term controlled by A

Y — A’(6,) is mean zero, sub-exponential

+ Play some games

38



Sketch of proof

« Can use properties of exponential families to get “Basic inequality”

KL (90 I 5) < (Y = A(65))T (6 — B) + A ||DBo|| — A Hné”

« First term is empirical process, second term controlled by A

Y — A’(6,) is mean zero, sub-exponential
+ Play some games

... 15 pages of BIEX. . .

38



Empirical results
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Toronto temperature
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Change in estimated SD (1960s vs 2000s)

summer winter




Change in mean temperature (1960s vs 2000s)

summer winter
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Observed temperatures in Toronto (1960s vs 2000s)

summer

0.151

0.10 1

density

0.05 1

0.00

winter
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Conclusion




Wrapping up

We generalized TF to exponential families

+ Developed tailored algorithms for some big data
« Derived risk estimator to select A w/o excess computation
- Proved theory for nonparametric function estimation

Future work

- Do we care about 8? A’(6)?

+ Multiparameter exponential families?

+ Model selection in discrete case?

 TF shrinks the estimate. Maybe reestimate using learned knots?

« Model misspecification relative to the actual data

44



Real MODIS track




Research overview




Computational choices impact scientific conclusions

These choices can take many forms:

« selecting tuning parameters
« different optimization algorthms return different solutions
+ how long do we run our MCMC (and which kind do we use)

Statistical theory often neglects these choices:

+ LASSO works with oracle tuning parameter
« We have the posterior if our MCMC runs forever
« EM gives us a global solution

46



Theory + Algorithm + Tuning parameter

Applications demand techniques that couple

1. computational considerations
2. statistical regularization

47



Theory + Algorithm + Tuning parameter

Applications demand techniques that couple

1. computational considerations
2. statistical regularization

Therefore, two important questions must be addressed:

1. How does the algorithm impact the science?
2. How do we select tuning parameters when computations are at a premium?

47



My research program seeks...

1. to enable application through reasoned tuning parameter selection; (Homrighausen and

McDonald, 2013, 2014, 2017, 2018)
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2019; Homrighausen and McDonald, 2016, 2019)
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My research program seeks...

1. to enable application through reasoned tuning parameter selection; (Homrighausen and

McDonald, 2013, 2014, 2017, 2018)

2. to deepen the theoretical understanding of approximate algorithms; (Ding and McDonald, 2017,

2019; Homrighausen and McDonald, 2016, 2019)

3. to develop approximation and tuning parameter selection techniques for dependent data;

(McDonald, 2019; McDonald and Shalizi, 2019a,b; McDonald et al., 2011, 2015)

4. to characterize the effects of algorithmic or other approximations in nonparametrics;

(McDonald, 2017; McDonald et al., 2017, 2019a)

5. to apply the proposed tools to meaningful applications. (Ding and McDonald, 2017, 2019;

Khodadadi and McDonald, 2019; McDonald and Shalizi, 2019a; McDonald et al., 2019b)

48



Research overview

How do we select tuning parameters when computations are at a premium?

How does the algorithm impact the science?
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Research overview

How do we select tuning parameters when computations are at a premium?
How does the algorithm impact the science?
My research program seeks to demonstrate

1. How to select tuning parameters in various contexts.
2. How algorithms can enable scientific conclusions.
3. How we can use approximate algorithms to improve some inferential procedures.

49



Collaborators and funding

Institute for
f' New Economic Thinking
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Appendix
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Generic Primal Dual Interior Point

1. Start with a guess 80
Solve a linear system [Ms = v]
Calculate a step size

& @ P

Iterate 2 & 3 until convergence
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Generic Primal Dual Interior Point

1. Start with a guess 80
Solve a linear system [Ms = v]
Calculate a step size

& @ P

Iterate 2 & 3 until convergence

M is a function of D and 6

Banded for TF

So 2 and 3 are solved in linear time.

53



Detailed PDIP

Primal Dual

mein f(6) + A|IDO|l, mvin (=DTv)

st [[Vlle < A

* f(0) = X6 +yje®
* ()= (v - 1) log A +uj—1

Perturbed KKT conditions (w > 0) =

VF*(=DTv) +D(v = A1) gy = D(v + A1) Tpi | |0

—pr (v = A1) + po(v+ A1) —w e o)

rw(V, e, o) =

+ Asw — oo, this converges to the optimum.
+ But this is a nonlinear system, can’t solve.
+ Use Newton steps, which give the [Ms = v] thing

« M is the Jacobian of ry. 54



Locally adaptive regression splines

i 2 (k)
min + ATV
fel N lly =15 )

« Fro=1{f:[0,1] > R, f® exists ae., TV (f¥) < oo}

- Solution is a k-degree spline (Mammen and van de Geer, 1997)

« k > 2 knots are not generally at the input points

+ Not generically computable, but a close relative is (whose knots are at the inputs)
+ Solve

. 1
min — [ly — GO|I2 + A |6,
6 2n

- Either G or C dense, (n X n).

55



Smoothing splines

min = fly I + A /X (1))’ o

fEWikrny2 2N

+1 2
« Weeriy = {f : [0.1] = R, f® exists, [ (F(5)0) dt < oo}
- Solution is a k"-degree spline (Wahba, 1990)
+ k needs to be odd

+ One way to solve:
1
min — |ly — 0| + A ||k8
in — [ly = 615 + A [Ik8l)

+ K is banded, so solution requires O(n) computations.

56



What our data look like

cylindrical
projection

57



Consensus version

min Z —€(xg) + A ||Dg.xg||1

xg=6 Vg 9e6

Xg < argmin —£€(xg) + A ||Dg.xg“1
Xg

+uT0xg = 0)+ £ |lxg ~ ]

0 «— avg(xg + ug/p)

Ug < Ug + p(xg — 0)

58



pmin D =€) +4 D oo,
ijt
#A 2 ool 4 o,

Bjjt < solution of A’(6j;) = k’(]?&,t - k,(;)

[a, b, c] < TF4 ([a, b, c] + [u, v, w])

[u,v,w] < [u,v,w] + 6 — [a, b, c]

k(”, r® simple linear functions of a, b, c, u, v, w

59



Stein’s unbiased risk estimator

« IfY ~ Normal (65, 02I,)
« And @(-) weakly differentiable with ess. bounded partials

9/11
S )]

tr Cov (Y, é}(Y)) =0’ Z

i

+ Ingredients for Stein’s Unbiased Risk Estimator:
1. Expression for risk | want (here MSE) w/o dependence on parameters

2. Expression for E [ae)l ’(Y)]

(Stein, 1981)
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Generalized SURE for continuous exp fam

* If po(y) = h(y) exp(87y —17A(6))
« And h(-) is weakly differentiable

|0} 5[]
)

'(y) 06, tr (h”(y))
“(h()) O+ Z,.(a_y,-(y))+ h)

E [eg 'e}(y)] -

GSURE: unbiased estimator of E [ 6, — 5;\

2

(Eldar, 2009)
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The Divergence

Define My = DD, the projection onto null(D).

For TF for Gaussian mean:

—~

PPN 00,
df(8,) = Z %(y) = tr(Mp) = nullity(D) = # knots + kR + 1

]

(Tibshirani and Taylor, 2012)
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The Divergence

Define My = DD, the projection onto null(D).

For TF for Gaussian mean:

—~

PPN 00,
df(8,) = Z %(y) = tr(Mp) = nullity(D) = # knots + kR + 1

]

2nd derivative

Count the pieces + kR + 1 - - °

Dec '18 Jun ‘19 Dec '19

(Tibshirani and Taylor, 2012)
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Which classes and cannonical scaling

« D is such that it smooths over axis parallel lines in the grid
« Define 7(§(C,,) ={6:|DO||, < Cy}

« Define 7{§+1(L) to be the Holder class containing discretized Holder smooth-functions with
k derivatives

+ Can show that ?{§+1(L) C Wg(anF(“’“)/d)
« This gives the lower bound.

+ Linear smoothers can’t achieve this rate (Donoho and Johnstone, 1998)
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Confidence intervals

Like LASSO other €;-regularized methods, this is biased
Full Hessian at the solution would be insane

Marginal coverage could be done numerically (but the bias)
One approach would be “relaxed” TF

(Very) recent work uses this for LASSO Cls

Ongoing work with Max Ferrell at Chicago Booth

Also, how does the (known) bias compare to the (unknown) misspecification
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Sources of misspecification

Real satellite track

AVHRR and HIRS instrument timelines
HIRS Ch. 5,6, 10 out of specy
AVHRR [ =] =—|

HIRS
M2 AVHRR E——

Track overlap wo R

noise & filter wheel trouble

IR ch noise "unusable™

Angular distortion of instruments o
s HRS filter wheel repeatedy stalls
Degradation of instrument quality (theoretically, w2 WIS i
more in mean than variance) =
VﬂRS oressing e ‘Gecaisional spacelook Snight intrusion
o :.‘ms:z prir o '
Intersatellite calibration e D Y D T N DR BT

source: (Staten et al., 2016)
Data interpolation from AVHRR and HIRS
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My research program seeks...

1. to enable application through reasoned tuning parameter selection;
+ A study on tuning parameter selection for the high-dimensional lasso. Homrighausen and McDonald. JSCS.
(2018)

+ Risk consistency of cross-validation for lasso-type procedures. Homrighausen and McDonald. Statistica Sinica.
(2017)

+ Leave-one-out cross-validation is risk consistent for lasso. Homrighausen and McDonald. Machine Learning.
(2014)

+ The lasso, persistence, and cross-validation. Homrighausen and McDonald. ICML. (2013)
+ SURE for logistic regression. McDonald and Tibshirani. (in progress)

+ Approximate Rademacher Complexities. McDonald. (in progress)
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CV “works” for lasso

Under strong conditions

E [ (YO X [3})2] _ (s log(p) log(n))

n

Under weak conditions

E (Yo = X3B) | - E [(¥o X )°] = o)

n 14
fort, =0 ((W) ), ”ﬁ”1 < t,.
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CV “works” for lasso

Under strong conditions

E [(YO —xg,é})z] _ o (slog(p) log(ﬂ))

n

Under weak conditions
2\ T 2
E [(Yo - Xq ﬁf) ] —E[(Yo - X{Bi,)"| = 0(1)

n 14
fort, =0 ((m) ), ”ﬁ”1 < tp.

CV "costs" log(n).
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My research program seeks...

2. to deepen the theoretical understanding of approximate algorithms;
+ On the Nystrom and column-sampling methods for the approximate principal components analysis of large
data sets. Homrighausen and McDonald. JCGS. (2016)
« Compressed and penalized linear regression." Homrighausen and McDonald. JCGS. (2019+)

+ Predicting phenotypes from microarrays using amplified, initially marginal, eigenvector regression. Ding and
McDonald. Bioinformatics. (2017)

- Sufficient principal component regression. Ding and McDonald. (submitted)
+ Semi-supervised learning in high dimensions with structured manifolds. Ding. (2020, PhD thesis)

+ Compression improves estimation under model misspecification. McDonald. (in progress)
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Suppose y; = x. B* + €;
Previous work:

+ Assume that Cov(y,X;) = 0 = ﬂj* =o.
« Algorithm: 1. screen by covariance, 2. perform PCR

Our work:

- Note that Hv (E [x7x] )J” =o=f =o.
2
« Algorithm: 1. Perform regularized PCR

(Bair and Tibshirani, 2004; Bair et al., 2006; Paul et al., 2008; Tay et al., 2018)
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Suppose y; = x. B* + €;
Previous work:

+ Assume that Cov(y,X;) = 0 = ﬁj* =o.
« Algorithm: 1. screen by covariance, 2. perform PCR

Our work:
- Note that Hv (E [x7X] )J” =o=f =o.
2
« Algorithm: 1. Perform regularized PCR
Intuition:

B*=E[X"X| E[xTy] =vp v vDUuTy = vD'UTy

(Bair and Tibshirani, 2004; Bair et al., 2006; Paul et al., 2008; Tay et al., 2018)
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MSE # Features Selected Precision Recall
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Oracle
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s+ - W =

ISPCA 1 ||~
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Theorem

Assume many conditions, s := |B.], supp(v) := {j : v; # o},

2 n

|supp(ﬁ) A supp(Bs)

(5-5)

and

2|
:OP(O'S ogp)
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Algorithmic tricks

This methodology uses two insights from earlier work (Homrighausen and McDonald, 2016, 2019)
1. Random projection works well when it gets the columns that have the most information.

2. SVD is computationally expensive. ADMM steps can be approximate under certain
conditions.
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My research program seeks...

3. to develop approximation algorithms for dependent data;

« Estimating B-mixing coefficients. McDonald, Shalizi, and Schervish. AISTATS. (2012)

+ Estimating B-mixing coefficients via histograms. McDonald, Shalizi, and Schervish. EJS. (2015)

+ Sparse additive state-space models. McDonald and Shalizi. (in progress)

+ Empirical macroeconomics and DSGE modeling in statistical perspective. McDonald and Shalizi. (in progress)
- Rademacher complexity of stationary sequences. McDonald and Shalizi. (submitted)

+ Nonparametric risk bounds for time-series forecasting. McDonald, Shalizi, and Shervish. JMLR. (2017)

+ Approximate Kalman Filtering. McDonald (in progress)
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Econ forecasting models don’t know “output” from “interest”

200% A
L
)
>
(=
S 100% -
S
e] o
o
o = % -
(0] * N ? 0 % " .“’“' Y 2 et s - » y;
) ‘ : ;
< g 3 ) 5
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~100%
1000 2000 3000 4000 5000

38% of permutations improved
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Economic forecasting models will never learn

25%
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15%
10%
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0%
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relative to the truth
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My research program seeks...

4. to characterize the effects of algorithmic or other approximations in nonparametrics;

+ Exponential family trend filtering on grids. McDonald, Sharpnack, Bassett, and Sandhanala. (in progress)
+ Minimax density estimation for growing dimension. McDonald. AISTATS. (2017)
+ Nonparametric risk bounds for time-series forecasting. McDonald, Shalizi, and Shervish. JMLR. (2017)

+ Minimax non-parametric regression with interactions. McDonald and Kolar. (in progress)
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Densities under the triangular array

Suppose your data is supported on a low-dimensional manifold.

You don’'t know the dimension, start small and increase as you collect more data.

No theory saying how to increase the dimension

Examples:

« PCA + density estimation, what d to use?

« How many brain regions can we estimate a density
over?
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If p > 2,30 < a <A < oo independent of d, n such that
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My research program seeks...

5. to apply the proposed tools to meaningful applications.
+ Markov-switching state space models for uncovering musical interpretation. McDonald, McBride, Gu, and
Raphael. (submitted)
+ Empirical macroeconomics and DSGE modeling in statistical perspective. McDonald and Shalizi. (in progress)
+ Cloud temperature time series analysis using state space approach. Wang. (2017, MS thesis)
+ Exponential family trend filtering on grids. McDonald, Sharpnack, Bassett, and Sandhanala. (in progress)
+ Sparse facicle estimation from diffusion tensor imaging. McDonald, Cohen, ..., Pestilli. (in progress)
+ A switching model for vocal performances. Granger, McDonald, and Raphael. (in progress)

+ Angular lasso for genetic clock time prediction. McDonald and Liu. (in progress)

79



My research program seeks...

5. to apply the proposed tools to meaningful applications.
+ Markov-switching state space models for uncovering musical interpretation. McDonald, McBride, Gu, and
Raphael. (submitted)
+ Empirical macroeconomics and DSGE modeling in statistical perspective. McDonald and Shalizi. (in progress)
+ Cloud temperature time series analysis using state space approach. Wang. (2017, MS thesis)
+ Exponential family trend filtering on grids. McDonald, Sharpnack, Bassett, and Sandhanala. (in progress)
+ Sparse facicle estimation from diffusion tensor imaging. McDonald, Cohen, ..., Pestilli. (in progress)
+ A switching model for vocal performances. Granger, McDonald, and Raphael. (in progress)

+ Angular lasso for genetic clock time prediction. McDonald and Liu. (in progress)

79



My research program seeks...

5. to apply the proposed tools to meaningful applications.
+ Markov-switching state space models for uncovering musical interpretation. McDonald, McBride, Gu, and
Raphael. (submitted)
+ Empirical macroeconomics and DSGE modeling in statistical perspective. McDonald and Shalizi. (in progress)
+ Cloud temperature time series analysis using state space approach. Wang. (2017, MS thesis)
+ Exponential family trend filtering on grids. McDonald, Sharpnack, Bassett, and Sandhanala. (in progress)
+ Sparse facicle estimation from diffusion tensor imaging. McDonald, Cohen, ..., Pestilli. (in progress)
+ A switching model for vocal performances. Granger, McDonald, and Raphael. (in progress)

+ Angular lasso for genetic clock time prediction. McDonald and Liu. (in progress)

79



Clustering Chopin’s Mazurka with learned interpretations

Luisada 1991 Milkina 1970
300
200
1001 "
V
o
a
qE: Shebanova 2002 Wasowski 1980
300
200
1004
0 20 40 60 0 20 40 60
measure

e constant

A decelerate

= accelerate
stress

80



Selected references

BAIR, E., AND TIBSHIRANI, R. (2004), “Semi-supervised methods to predict patient survival from gene expression data,” PLoS Biology, 2(4), e108.

BAIR, E., HASTIE, T., PAUL, D., AND TIBSHIRANI, R. (2006), “Prediction by supervised principal components,” Journal of the American Statistical Association, 101(473), 119-137.
DELEDALLE, C.-A. (2017), “Estimation of Kullback-Leibler losses for noisy recovery problems within the exponential family,” Electronic Journal of Statistics, 11, 3141—3164.
DING, L., AND MCDONALD, D. J. (2017), “Predicting phenotypes from microarrays using amplified, initially marginal, eigenvector regression,” Bioinformatics, 33(14), i350-i358.
DING, L., AND MCDONALD, D. J. (2019+), “Sufficient principal component regression for genomics,” submitted.

DONOHO, D. L., AND JOHNSTONE, I. M. (1998), “Minimax estimation via wavelet shrinkage,” The Annals of Statistics, 26(3), 879-921.

EFRON, B. (1986), “How biased is the apparent error rate of a prediction rule?” Journal of the American Statistical Association, 81(394), 461-470.

ELDAR, Y. C. (2009), “Generalized SURE for exponential families: Applications to regularization,” IEEE Transactions on Signal Processing, 57, 471-481.

GREEN, P. J., AND SILVERMAN, B. W. (1994), Nonparametric regression and generalized linear models: a roughness penalty approach, Chapman and Hall/CRC, Boca Raton, FL.

HOMRIGHAUSEN, D., AND MCDONALD, D. J. (2013), “The lasso, persistence, and cross-validation,” in Proceedings of the 30”' International Conference on Machine Learning (ICML),
eds. S. Dasgupta and D. McAllester, vol. 28, pp. 1031-1039, PMLR.

HOMRIGHAUSEN, D., AND MCDONALD, D. J. (2014), “Leave-one-out cross-validation is risk consistent for lasso,” Machine Learning, 97(1-2), 65-78.

HOMRIGHAUSEN, D., AND MCDONALD, D. J. (2016), “On the Nystrédm and column-sampling methods for the approximate principal components analysis of large data sets,”
Journal of Computational and Graphical Statistics, 25(2), 344-362, arXiv:1206.6128.

HOMRIGHAUSEN, D., AND MCDONALD, D. J. (2017), “Risk consistency of cross-validation for lasso-type procedures,” Statistica Sinica, 27(3), 1017-1036.

81


http://arxiv.org/abs/1206.6128

Selected references

HOMRIGHAUSEN, D., AND MCDONALD, D. J. (2018), “A study on tuning parameter selection for the high-dimensional lasso,” Journal of Statistical Computation and Simulation, 88,
2865-2892.

HOMRIGHAUSEN, D., AND MCDONALD, D. J. (2019+), “Compressed and penalized linear regression,” Journal of Computational and Graphical Statistics, (in press), arXiv:1705.08036.

HUTTER, J.-C., AND RIGOLLET, P. (2016), “Optimal rates for total variation denoising,” in 29th Annual Conference on Learning Theory, eds. V. Feldman, A. Rakhlin, and 0. Shamir,
vol. 49 of Proceedings of Machine Learning Research, pp. 1115-1146, Columbia University, New York, New York, USA, PMLR.

KHODADADI, A., AND MCDONALD, D. J. (2019), “Algorithms for estimating trends in global temperature volatility,” in Proceedings of the 33rd AAAI Conference on Artificial
Intelligence (AAAI-19), eds. P. V. Hentenryck and Z.-H. Zhou, Association for the Advancement of Artificial Intelligence.

KiM, S.-J., KOH, K., BOYD, S., AND GORINEVSKY, D. (2009), “€4 trend filtering,” SIAM Review, 51(2), 339-360.
MAMMEN, E., AND VAN DE GEER, S. (1997), “Locally adaptive regression splines,” The Annals of Statistics, 25(1), 387-13.

MCDONALD, D. J. (2017), “Minimax Density Estimation for Growing Dimension,” in Proceedings of the 20" International Conference on Artificial Intelligence and Statistics
(AISTATS), eds. A. Singh and J. Zhu, vol. 54, pp. 194-203, PMLR.

MCDONALD, D. J. (2019+), “Sparse additive state-space models,” in preparation.
MCDONALD, D. J., AND SHALIZI, C. R. (2019+a), “Empirical macroeconomics and DSGE modeling in statistical perspective,” in preparation.
MCDONALD, D. J., AND SHALIzI, C. R. (2019+b), “Rademacher complexity of stationary sequences,” submitted, arXiv:1106.0730.

MCDONALD, D. J., SHALIZI, C. R., AND SCHERVISH, M. (2011), “Estimating beta-mixing coefficients,” in Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics (AISTATS), eds. G. Gordon, D. Dunson, and M. Dudik, vol. 15, pp. 516-524, PMLR, arXiv:1103.0941.

82


http://arxiv.org/abs/1705.08036
http://arxiv.org/abs/1106.0730
http://arxiv.org/abs/1103.0941

Selected references

MCDONALD, D. J., SHALIZI, C. R., AND SCHERVISH, M. (2015), “Estimating beta-mixing coefficients via histograms,” Electronic Journal of Statistics, 9, 2855-2883.

MCDONALD, D. J., SHALIZI, C. R., AND SCHERVISH, M. (2017), “Nonparametric risk bounds for time-series forecasting,” Journal of Machine Learning Research, 18(32), 1-40.
MCDONALD, D. J., SHARPNACK, J., BASSETT, R., AND SADHANALA, V. (2019+a), “Exponential family trend filtering on grids,” in preparation.

MCDONALD, D. J., MCBRIDE, M., GU, Y., AND RAPHAEL, C. (2019+b), “Markov-switching state space models for uncovering musical interpretation,” submitted, arXiv:1907.06244.

PAUL, D., BAIR, E., HASTIE, T., AND TIBSHIRANI, R. (2008), ““Preconditioning’ for feature selection and regression in high-dimensional problems,” The Annals of Statistics, 36(z),

1595-1618.
SADHANALA, V. (2019), “Nonparametric methods with total variation type regularization,” Ph.D. thesis, Carnegie Mellon University.

SADHANALA, V., WANG, Y.-X., SHARPNACK, J. L., AND TIBSHIRANI, R. J. (2017), “Higher-order total variation classes on grids: Minimax theory and trend filtering methods,” in
Advances in Neural Information Processing Systems 30, eds. I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, pp. 5800-5810,
Curran Associates, Inc.

STATEN, P. W., KAHN, B. H., SCHREIER, M. M., AND HEIDINGER, A. K. (2016), “Subpixel characterization of HIRS spectral radiances using cloud properties from AVHRR,” Journal of
Atmospheric and Oceanic Technology, 33(7), 1519-1538.

STEIN, C. M. (1981), “Estimation of the mean of a multivariate normal distribution,” The Annals of Statistics, 9(6), 1135-1151.
TAY, ). K., FRIEDMAN, J., AND TIBSHIRANI, R. (2018), “Principal component-guided sparse regression,” tech rep.
TIBSHIRANI, R. J. (2014), “Adaptive piecewise polynomial estimation via trend filtering,” Annals of Statistics, 42, 285-323.

TIBSHIRANI, R. J., AND TAYLOR, J. (2012), “Degrees of freedom in lasso problems,” Annals of Statistics, 40, 1198-1232.

83


http://arxiv.org/abs/1907.06244

Selected references

VAITER, S., DELEDALLE, C., FADILI, J., PEYRE, G., AND DOSSAL, C. (2017), “The degrees of freedom of partly smooth regularizers,” Annals of the Institute of Statistical Mathematics,
69, 791-832.

WAHBA, G. (1990), Spline models for observational data, vol. 59 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA.

WANG, Y.-X., SHARPNACK, J., SMOLA, A. J., AND TIBSHIRANI, R. ). (2016), “Trend filtering on graphs,” Journal of Machine Learning Research, 17(105), 1-41.

84



	Estimating the trend in cloud-top temperature volatility
	Trend filtering
	Algorithms
	Tuning parameter selection
	Theory
	Empirical results
	Conclusion
	Research overview
	Appendix

