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EXPLICIT+IMPLICIT DIMENSION REDUCTION

Modern statistical applications — genomics, neural image analysis, text analysis, weather
prediction — have large numbers of covariates p

Also frequently have lots of observations n.

Need algorithms which can handle these kinds of data sets. With good statistical properties

2



MOTIVATING EXAMPLES

1. Localizing groups of genes that
predict disease

2. Finding global temperature
trends using satellite imagery

3. Detecting outliers in fMRI
scans
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ESTIMATORS

1. Sparse PCR (BT04, PBHT08, DM17)

V̂ = argmin
V ∈Fd

− 1
n

tr(X>XV ) + λ
∑
ij

|Vij |

θ̂ = argmin
θ

∥∥∥Y −XV̂ θ∥∥∥2

2
.

2. `1-trend filtering (KKBG09, TT12, T14, MK18)

θ̂ = argmin
θ
−L(Y | θ) + λ ‖Dθ‖1

3. PCA leverage (MNECL16, MMD18)

Û = argmin
U∈Fd

− 1
n

tr
(
XX>U

)
+ λ

∥∥∥∥∥∥D
∑
j

|Vij |

∥∥∥∥∥∥
1
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GENERIC CONVEX OPTIMIZATION

Many estimators have the form:
min
x
f(x) + g(x)

Consider f(x) as the negative log-likelihood and g(x) as some kind of penalty that
preferences useful structure.

The negative likelihood is convex and differentiable.
The penalty may be neither.
Sometimes relax the penalty to something convex to get approximate structure:

Example:
min
β
‖Y −Xβ‖22 + λ ‖β‖0 −→ min

β
‖Y −Xβ‖22 + λ ‖β‖1
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ALTERNATING DIRECTION METHOD OF MULTIPLIERS
One way to solve optimization problems like this is to restate the problem

Original Equivalent

min
x

f(x) + g(x)
min
x,z

f(x) + g(z)

s.t. x− z = 0

Then, iterate the following with ρ > 0

x← argmin
x

f(x) + ρ

2 ‖x− z + u‖22

z ← argmin
z

g(z) + ρ

2 ‖x− z + u‖22

u← u+ x− z
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WHY WOULD YOU DO THIS?
It decouples f and g: this can be easier
If f and g have the right structure, the individual updates can be parallelized
The algorithm converges under very general conditions
There are often many ways to decouple a problem

min
β
‖Y −Xβ‖22 + λ ‖β‖1

The individual minimizations don’t have to be solved in closed form

Example:
β ← (X>X + ρI)−1(X>Y + ρ(α− u))
α← Sλ/ρ(β + u)
u← u+ β − α

[Sa(b)]k = sgn(bk)(|bk| − a)+
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CONDITIONS FOR CONVERGENCE

When the updates are exact (as with lasso), all you need for convergence is

1. f , g are convex, extended real valued.
2. f(x) + g(z) + u>(x− z) has a saddle point.

The convergence rate is not well understood.

It turns out, you can solve the minimizations approximately.

∞∑
k=1

∥∥∥Π(yk)− Π̃(yk)
∥∥∥

2
<∞

Source: Eckstein and Bertsekas 1992
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WHY APPROXIMATE?

In our Example, the first step involved a matrix inversion (X>X + ρI)−1

The same is true for the real data cases above: we need matrix
decompositions/inversions.

Focus on two methods of “approximate eigendecomposition”

1. Nyström extension
2. Column sampling
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A QUICK SKETCH OF THE INTUITION

Both methods fall into a larger class

Suppose we want to approximate S = 1
nX
>X ∈ Rp×p

S is symmetric and positive semi-definite

Choose t and form a “sketching” matrix Φ ∈ Rp×t

Then write
S ≈ (SΦ)(Φ>SΦ)†(SΦ)>
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SPECIAL CASES

Nyström and column sampling correspond to particular Φ
But they are easy to implement without extra multiplications
Randomly choose t entries in {1, . . . , p} and
Then partition the matrix so the selected portion is S11

S =
[
S11 S12
S21 S22

]
Nyström

S ≈
[
S11
S21

]
S†11

[
S11 S12

]
Column sampling

S ≈ U
([
S11
S21

])
Λ
([
S11
S21

])
U

([
S11
S21

])>
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Woodruff (2014).
Pourkamali (2014).
Homrighausen, McDonald (2016).
Wang, Gittens, Mahoney (2017)
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ADMM FOR GENETICS

Goal is to find clusters of genes which predict the response.

The approach is semi-supervised: like PCR, but we assume that the eigenvectors are “row
sparse”.

1. This allows for consistent estimation when p� n.
2. Matches our assumption that only a few genes are predictive: ‖Vi‖2 = 0⇒ βi = 0.

V ← ΠFd

(
Y − U + 1

nρ
X>X

)
Y ← Sλ/ρ(V + U)
U ← U + V − Y
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PROJECTING ONTO THE FANTOPE
Given an eigen decomposition of A =

∑
i γiaia

>
i .

ΠFd(A) =
∑
i

γ+
i (θ)aia>i

γ+
i (θ) = min(max(γi − θ, 0), 1), θ s.t.

∑
i

γ+
i (θ) = d

The γ-θ stuff solves a monotone, piecewise linear equation.
For our data, S is 105 × 105.
And we have to do the decomposition at every iteration.
The fMRI outlier detection problem involves a similar step but the matrix is
nvoxels × nvoxels.

Source: Vu, Cho, Lei, and Rohe 2013
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SIMULATION FOR GENES
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A NOD TOWARD THEORY

At each iteration, we use column sampling with t = 1000
Could also use “Nyström approximation”

These approximations are accurate: something like O(ε−1) if t = Ω((1− ε)−2)
Need t→ p as k →∞ to guarantee convergence, though seems unnecessary in
practice.

Source: See Alex’s work as well as that of Mahoney, Woodroofe, Drineas, others
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CONCLUSION

This talk summarized some methodology for analyzing large data sets.

Making these methods work requires computational approximations.

These ideas combined algorithmic dimension reduction with nonlinear dimension
reduction.

Current work develops more detailed theoretical results for these methods.
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COLLABORATORS AND FUNDING
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